STAT 515 -- Chapter 7: Confidence Intervals

- With a point estimate, we used a single number to estimate a parameter.
- We can also use a <u>set of numbers</u> to serve as "reasonable" estimates for the parameter.

Example: Assume we have a sample of size 100 from a population with $\sigma = 0.1$.

From CLT:

Empirical Rule: If we take many samples, calculating \overline{X} each time, then about 95% of the values of \overline{X} will be between:

Therefore:

This interval is called an approximate 95% "confidence interval" for μ .

<u>Confidence Interval</u>: An interval (along with a level of confidence) used to estimate a parameter.

• Values in the interval are considered "reasonable" values for the parameter.

<u>Confidence level</u>: The percentage of all CIs (if we took many samples, each time computing the CI) that contain the true parameter.

<u>Note</u>: The endpoints of the CI are <u>statistics</u>, calculated from sample data. (The <u>endpoints</u> are random, not the parameter!)

In general, if \overline{X} is normally distributed, then in $100(1-\alpha)\%$ of samples, the interval

will contain µ.

Note: $z_{\alpha/2}$ = the z-value with $\alpha/2$ area to the right:

100(1 –
$$\alpha$$
)% CI for μ : $\bar{\mathbf{X}} \pm \mathbf{z}_{\alpha/2}(\sigma/\sqrt{n})$

Problem: We typically do not know the parameter σ . We must use its estimate s instead.

Formula: CI for μ (when σ is unknown)

Since
$$\frac{\overline{X} - \mu}{s / \sqrt{n}}$$
 has a t-distribution with $n-1$ d.f., our $100(1-\alpha)\%$ CI for μ is:

where $t_{\alpha/2}$ = the value in the t-distribution (n-1 d.f.) with $\alpha/2$ area to the right:

• This is valid if the data come from a normal distribution.

Example: We want to estimate the mean weight μ of trout in a lake. We catch a sample of 9 trout. Sample

mean $\bar{X} = 3.5$ pounds, s = 0.9 pounds. 95% CI for μ ?

Question: What does 95% confidence mean here, exactly?

• If we took many samples and computed many 95% CIs, then about 95% of them would contain μ .

The fact that contains μ "with 95% confidence" implies the <u>method</u> used would capture μ 95% of the time, if we did this over many samples.

Picture:

<u>A WRONG statement</u>: "There is .95 probability that μ is between 2.81 and 4.19." Wrong! μ is not random – μ doesn't change from sample to sample. It's either between 2.81 and 4.19 or it's not.

Level of Confidence

Recall example: 95% CI for μ was (2.81, 4.19).

- For a 90% CI, we use $t_{.05}$ (8 d.f.) = 1.86.
- For a 99% CI, we use $t_{.005}$ (8 d.f.) = 3.355.

90% CI:

99% CI:

Note tradeoff: If we want a higher confidence level, then the interval gets wider (less precise).

Confidence Interval for a Proportion

- We want to know how much of a population has a certain characteristic.
- The proportion (always between 0 and 1) of individuals with a characteristic is the same as the probability of a random individual having the characteristic.

Estimating proportion is equivalent to estimating the binomial probability p.

Point estimate of p is the <u>sample proportion</u>:

Note $\hat{p} = \frac{x}{n}$ is a type of sample average (of 0's and 1's), so CLT tells us that when sample size is large, sampling distribution of \hat{p} is approximately normal.

For large n:

 $100(1 - \alpha)\%$ CI for *p* is:

How large does n need to be?

Example 1: A student government candidate wants to know the proportion of students who support her. She takes a random sample of 93 students, and 47 of those support her. Find a 90% CI for the true proportion.

Check:

Example 2: We wish to estimate the probability that a randomly selected part in a shipment will be defective. Take a random sample of 79 parts, and find 4 defective parts. Find a 95% CI for p.

Confidence Interval for the Variance σ^2 (or for s.d. σ)

Recall that if the data are normally distributed, $\frac{(n-1)s^2}{\sigma^2} \text{ has a } \chi^2 \text{ sampling distribution with } (n-1) \text{ d.f.}$ This can be used to develop a $(1-\alpha)100\%$ CI for σ^2 :

Example: Trout data example (assume data are normal – how to check this?) s = 0.9 pounds, so $s^2 = n = 9$. Find 95% CI for σ^2 .

95% CI for σ :

Also, a CI for the ratio of two variances, $\frac{\sigma_1^2}{\sigma_2^2}$, can be found by the formula:

Example: If we have a second sample of 13 trout with sample variance $s_2^2 = 0.7$, then a 95% CI for $\frac{\sigma_1^2}{\sigma_2^2}$ is:

Sample Size Determination

CI for proportion:

Note: Always round n up to the next largest integer.

These formulas involve σ , p and q, which are usually unknown in practice. We typically guess them based on prior knowledge – often we use p = 0.5, q = 0.5.

Example 1: How many patients do we need for a blood pressure study? We want a 90% CI for mean systolic blood pressure reduction, with a margin of error of 5 mmHg. We believe that $\sigma = 10 \ mmHg$.

Example 2: Pollsters want a 95% CI for the proportion of voters supporting President Bush. They want a 3% margin of error (B = .03). What sample size do they need?