STAT 515 -- Chapter 7: Confidence Intervals

- With a point estimate, we used a single number to estimate a parameter.
- We can also use a set of numbers to serve as "reasonable" estimates for the parameter.

Example: Assume we have a sample of size 100 from a population with $\sigma=0.1$.

From CLT:

Empirical Rule: If we take many samples, calculating $\overline{\mathbf{X}}$ each time, then about 95% of the values of \bar{X} will be between:

Therefore:

This interval is called an approximate 95\% "confidence interval" for μ.

Confidence Interval: An interval (along with a level of confidence) used to estimate a parameter.

- Values in the interval are considered "reasonable" values for the parameter.

Confidence level: The percentage of all CIs (if we took many samples, each time computing the CI) that contain the true parameter.

Note: The endpoints of the CI are statistics, calculated from sample data. (The endpoints are random, not the parameter!)

In general, if \bar{X} is normally distributed, then in $100(1-\alpha) \%$ of samples, the interval
will contain μ.
Note: $z_{\alpha / 2}=$ the z-value with $\alpha / 2$ area to the right:

100(1- α)\% CI for $\mu: \quad \bar{X} \pm \mathbf{z}_{\alpha / 2}(\sigma / \sqrt{n})$

Problem: We typically do not know the parameter σ. We must use its estimate s instead.

Formula: CI for μ (when σ is unknown)
Since $\frac{\bar{X}-\mu}{s / \sqrt{n}}$ has a t-distribution with $\boldsymbol{n}-\mathbf{1}$ d.f., our $100(1-\alpha) \%$ CI for μ is:
where $t_{\alpha / 2}=$ the value in the t-distribution ($n-1$ d.f.) with $\alpha / 2$ area to the right:

- This is valid if the data come from a normal distribution.

Example: We want to estimate the mean weight μ of trout in a lake. We catch a sample of 9 trout. Sample mean $\overline{\mathbf{X}}=3.5$ pounds, $s=0.9$ pounds. 95% CI for μ ?

Question: What does 95% confidence mean here, exactly?

- If we took many samples and computed many 95% CIs, then about 95% of them would contain μ.

The fact that
contains μ "with 95\% confidence" implies the method used would capture μ 95% of the time, if we did this over many samples.

Picture:

A WRONG statement: "There is .95 probability that μ is between 2.81 and 4.19." Wrong! μ is not random $-\mu$ doesn't change from sample to sample. It's either between 2.81 and 4.19 or it's not.

Level of Confidence

Recall example: 95% CI for μ was (2.81, 4.19).

- For a 90% CI, we use $t_{.05}$ (8 d.f.) $=1.86$.
- For a 99\% CI, we use t. $\mathbf{0} \mathbf{0 5}$ (8 d.f.) $=3.355$.

90\% CI:

99\% CI:

Note tradeoff: If we want a higher confidence level, then the interval gets wider (less precise).

Confidence Interval for a Proportion

- We want to know how much of a population has a certain characteristic.
- The proportion (always between 0 and 1) of individuals with a characteristic is the same as the probability of a random individual having the characteristic.

Estimating proportion is equivalent to estimating the binomial probability p.

Point estimate of \boldsymbol{p} is the sample proportion:

Note $\hat{p}=\frac{x}{n}$ is a type of sample average (of 0 's and 1 's), so CLT tells us that when sample size is large, sampling distribution of \hat{p} is approximately normal.

For large n :
$100(1-\alpha) \%$ CI for p is:

How large does n need to be?

Example 1: A student government candidate wants to know the proportion of students who support her. She takes a random sample of 93 students, and 47 of those support her. Find a 90\% CI for the true proportion.

Check:

Example 2: We wish to estimate the probability that a randomly selected part in a shipment will be defective. Take a random sample of 79 parts, and find 4 defective parts. Find a 95\% CI for p.

Confidence Interval for the Variance σ^{2} (or for s.d. σ)

Recall that if the data are normally distributed, $\frac{(n-1) s^{2}}{\sigma^{2}}$ has a χ^{2} sampling distribution with $(n-1)$ d.f. This can be used to develop a $(1-\alpha) 100 \%$ CI for σ^{2} :

Example: Trout data example (assume data are normal - how to check this?) $s=0.9$ pounds, so $s^{2}=$ $\boldsymbol{n}=9$. Find $95 \% \mathrm{CI}$ for σ^{2}.

95\% CI for σ :

Also, a CI for the ratio of two variances, $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$, can be found by the formula:

Example: If we have a second sample of 13 trout with sample variance $\boldsymbol{s}_{\mathbf{2}}{ }^{2}=\mathbf{0 . 7}$, then a 95% CI for $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$ is:

Sample Size Determination

Note that the bound (or margin of error) B of a CI equals half its width.

For the CI for the mean (with σ known), this is:

For the CI for the proportion, this is:

Note: When the sample size \boldsymbol{n} is bigger, the $\mathbf{C I}$ is narrower (more precise).

We often want to determine what sample size we need to achieve a pre-specified margin of error and level of confidence. Solving for \boldsymbol{n} :

CI for mean:

CI for proportion:

Note: Always round \boldsymbol{n} up to the next largest integer.
These formulas involve σ, p and q, which are usually unknown in practice. We typically guess them based on prior knowledge - often we use $\boldsymbol{p}=0.5, q=0.5$.

Example 1: How many patients do we need for a blood pressure study? We want a $\mathbf{9 0 \%}$ CI for mean systolic blood pressure reduction, with a margin of error of 5 $\mathbf{m m H g}$. We believe that $\sigma=10 \mathrm{mmHg}$.

Example 2: Pollsters want a 95\% CI for the proportion of voters supporting President Bush. They want a 3\% margin of error $(B=.03)$. What sample size do they need?

