
Analysis of Covariance Models 

 

● A simple situation suited for ANCOVA is when we 

have two independent variables affecting the response:  

one is a factor, and the other is a continuous variable. 

 

● ANCOVA combines the one-way ANOVA model and 

the SLR model: 
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● For the t levels of the factor (i = 1, …, t), define: 

 

 

 

→ Yij =  

 

● This shows a set of t SLR lines having equal slopes, 

but having different intercepts for each of the t levels of 

the factor. 

 

Picture (parallel lines relating E(Y) and X): 

 

 

 

 

 

 

 

 

 



Example:  A study analyzing blood pressure reduction 

(Y) in patients.  The factor is type of drug (3 different 

drugs).  However, the weight of the patient (a 

continuous variable) will also affect blood pressure 

reduction. 

 

● If we’re interested in the effect of each drug on BP 

reduction, we should account for the patients’ weights 

as well. 

 

● One way:  Break weights into categories (levels) and 

make weight a blocking factor. 

 

Problems:  (1) There may not be enough people in some 

of the weight categories. 

(2)  We may not know weight is affecting BP reduction 

until after the experiment is ongoing. 

(3)  Weight is inherently continuous. 

(4)  In some studies, there may be several continuous 

variables affecting the response. 

 

● ANCOVA achieves similar benefits to blocking, but is 

preferable when controlling for continuous covariates. 

 

Example:  Table 11.6 data (p. 593) 

 

● Analyzing the effect of 3 types of classes on students’ 

post-class test score in trigonometry.  

 

 

 



Y (POST) =  

 

 

Factor (CLASSTYPE) =  

 

 

● We want to control for previous knowledge of 

trigonometry. 

 

covariate X (PRE) =  

 

Model equation: 

 

 

 

 

 

● See example for ANCOVA data analysis (output 

similar to Table 11.7, p. 594). 

 

● Important pieces of output:  Overall F* = 8.46 (P-

value near 0) → our model is useful overall. 

 

(1)  Does the covariate (pre-class score) have a 

significant effect on post-class score? 

 

 

 

 

 

 



(2)  Does the factor (type of class) have a significant 

effect on post-class score?  (Look at the Type III SS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

● We also get least-squares estimates 13210
ˆ,ˆ,ˆ,ˆ,ˆ   for 

this model. 

 

● Interpreting 1̂ =              : 

 

 

 

 

 

 

 

 

 

 



● Adjusted estimated mean post-class scores for each 

type of class (at any given value of pre-class score) are: 

 

Class type 1:   X110
ˆˆˆ   

 

Class type 2:   X120
ˆˆˆ   

 

Class type 3:   X130
ˆˆˆ   

 

● We can extend the ANCOVA model to have more 

than one covariate. 

 

Example:  Suppose we had two continuous covariates, 

pre-test score and IQ. 

 

Results from software: 

 

 

 

 

 

● Interpreting 2̂ =              : 

 

 

 

 

 

 

 



Unequal Slopes Situation 

 

● Maybe the effect of the covariate is different for each 

level of the factor. 

 

Picture: 

 

 

 

 

 

 

 

 

 

● We can formally test whether this is true by including 

a term for the interaction between the factor and the 

covariate. 

 

Example:  Are the slopes unequal for the model with 

factor CLASSTYPE and covariate PRE? 

 

● Analysis:  Include CLASSTYPE by PRE interaction 

term. 

 

● Look at F-test for interaction term in output: 

 

F* =      P-value = 

 

Conclusion: 

 



Logistic Regression 

 

● In analyses we have studied, the response variable has 

been continuous (typically normal). 

 

● In some studies, we have a binary response (which 

takes one of only two values. 

 

→ Response represented by a dummy variable (with 

values 0 and 1). 

 

Example 1:  Dose-response model: 

 

Y =  

 

 

 

X =  

 

Example 2:  Survival model: 

 

Y =  

 

 

X =  

 

 

● The standard linear model   XY 10  with 

fitted regression line XY 10
ˆˆˆ   is one possibility for 

analyzing such data. 



● In this situation, Ŷ does not represent a predicted  

Y-value (since Y must equal 0 or 1). 

 

● Ŷ represents the estimated probability that Y = 1, 

given a certain X value. 

 

Problem:  The straight-line regression could (for certain 

X values) predict probabilities for Y that are outside of 

the range from 0 to 1. 

 

● A more appropriate model is the logistic regression 

model: 

 

 

 

 

 

● Taking the expected value for a given X, this is: 

 

 

 

 

 

 

● Note again:  E(Y | X) represents the probability that  

Y = 1 given some X value. 

 

Key advantage:  This logistic function always lies 

between 0 and 1. 

 



Note:  As a function of X, the logistic function E(Y | X) 

● has a sigmoidal shape 

● approaches 0 or 1 at the left/right limits 

● is monotone (always increases or always decreases) 

 

● Value of 1 governs the shape of the logistic curve.   

 

Picture: 

 

 

 

 

 

 

 

 

 

● With sample data, we estimate 0 and 1 to obtain the 

estimated logistic regression curve: 

 

 

 

 

 

 

 

 

● Estimating the parameters is easier after a 

transformation. 

 

 



Some terminology: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

● This is called a logit transformation. 

 

Note: 

 

 

 

 

 

 

● With a logit transformation of both sides of the 

logistic regression equation, we get: 

 

 

 

 



Problem with variances:  Y here is a binomial variable 

with: 

 

 

Its variance is: 

 

 

● Note the variance of Y depends on X.  This implies we 

should not use least-squares method for estimating 

parameters. 

 

● Alternative:  Use maximum likelihood estimation:  

Choose values of 0, 1 that maximize the joint 

probability function, given a particular data set. 

 

Example (Table 13.3 data):  How does a city’s income 

level relate to the probability that it uses Tax Increment 

Financing (TIF)? 

 

Y =  

 

 

X = median income of city (in thousands of dollars) 

 

● Parameter estimation done using software: 

 

0̂ =             1̂ =  

 

 

 



● Software will provide a plot of the data along with the 

estimated logistic regression curve (see example). 

 

Plot: For a city with median income $11,000, the 

estimated probability of using TIF is about: 

 

● Note that for any income value X*: 

 

 

the odds ratio =  

 

is estimated to be: 

 

● A 95% CI for this odds ratio is: 

 

Interpretation: 

 

 

 

 

 

 

Hypothesis Tests in Logistic Regression 

 

● The Hosmer-Lemeshow Test is a test of how well the 

logistic model fits the data.  

 

● Software gives Hosmer-Lemeshow P-value =  

 

Conclusion: 

 



Test for a Significant Effect of Income 

 

● To test whether income is significant, we test  

H0: 1 = 0  vs.  Ha: 1 ≠ 0. 

 

● Instead of F-tests or t-tests, we have 2 tests here. 

 

● The Wald test is a test about an individual coefficient. 

 

● The Likelihood Ratio test is a test about the whole set 

of independent variables in the model. 

 

● With simple logistic regression, these both test the 

same hypotheses:  H0: 1 = 0  vs.  Ha: 1 ≠ 0. 

 

Example:  Wald test P-value =    

  

LR test P-value = 

 

Conclusion: 

 

 

 

 
 


