Design of Experiments

- Factorial experiments require a lot of resources
- Sometimes real-world practical considerations require us to design experiments in specialized ways.
- The design of an experiment is the specification of how treatments are assigned to experimental units.

Goal: Gain maximum amount of reliable information using minimum amount of resources.

- Reliability of information is measured by the standard error of an estimate.
- How to decrease standard errors and thereby increase reliability?
- Recall the One-Way ANOVA:
- Experiments we studied used the Completely

Randomized Design (CRD).

- The estimate of σ^{2} was MSW. This measured the variation among responses for units that were treated alike (measured variation within groups).
- We call this estimating the experimental error variation.
- What if we divide the units into subgroups (called blocks) such that units within each subgroup were similar in some way?
- We would expect the variation in response values among units treated alike within each block to be relatively small.

Randomized Block Design (RBD)

- RBD: A design in which experimental units are divided into subgroups called blocks and treatments are randomly assigned to units within each block.
- Blocks should be chosen so that units within a block are similar in some way.
- Reasons for the variation in our data values:

CRD
RBD

- Benefits of a reduction in experimental error:
- decreases MSW (denominator of F^{*} ratios used in F-tests) \rightarrow more power to reject null hypotheses
- decreases standard errors of means \rightarrow shorter CIs for mean responses

Example 1: Suppose we investigate whether the average math-test scores of students from 8 different majors differ across majors.

- But ... students will be taught by different instructors.
- We're not as interested in the instructor effect, but we know it adds another layer of variability.

Solution:

Example 2: Lab animals of a certain species are given different diets to determine the effect of diet on weight gain.

- Possible block design:

Example 3: An industrial experiment is conducted over several days (with a different lab technician each day).

- Possible block design:

Example 4: (Table 10.2 data)
$Y=$ wheat crop yield
experimental units = plots of wheat
treatments $=3$ different varieties of wheat
blocks $=$ regions of field
Possible arrangement:

- The data are given in Table 10.2.
- Note: Variety A has the greatest mean yield, but there is a sizable variation among blocks.
- If we had used a CRD, this variation would all be experimental error variance (inflates MSW).
- Analysis as CRD (ignoring blocks):
- But ... within each block, Variety A clearly has the greatest yield (RBD will account for this).

Formal Linear Model for RBD

- This assumes one observation per treatment-block combination.
$Y_{i j}=$ response value for treatment i in block j $\mu=$ an overall mean response
$\tau_{i}=$ effect of treatment i
$\beta_{j}=$ effect of block j
$\varepsilon_{i j}=$ random error term
- Looks similar to two-factor factorial model with one observation per cell.

Key difference: With RBD, we are not equally interested in both factors.

- The treatment factor is of primary importance; the blocking factor is included merely to reduce experimental error variance.
- With RBD, the block effects are often considered random (not fixed) effects.
- This is true if the blocks used are a random sample from a large population of possible blocks.
- If treatment effects are fixed and block effects are random, the RBD model is called a mixed model.
- In this case, the treatment-block interaction is also random.
- This interaction measures the variation among treatment effects across the various blocks.
- The mean square for interaction is used here as an estimate of the experimental error variance σ^{2}.

Expected Mean Squares in RBD

Source
df
$\underline{\text { E(MS) }}$

- Testing for an effect on the mean response among treatments:
H_{0} :
- The correct test statistic is apparent based on E(MS):

$$
\mathbf{F}^{*}=\quad \text { Reject } \mathbf{H}_{0} \text { if: }
$$

- Testing for significant variation across blocks: H_{0} :
- The correct test statistic is again apparent:

$$
\mathbf{F}^{*}=\quad \text { Reject } \mathbf{H}_{0} \text { if: }
$$

Example: (Wheat data - Table 10.2)

- The ANOVA table formulas are the same as for the two-way ANOVA.
- We use software for the ANOVA table computations.

RBD analysis (Wheat data):
$\mathbf{F}^{*}=$

- We conclude that the mean yields are significantly different for the different varieties of wheat. At $\alpha=$ 0.05 , we reject $H_{0}: \tau_{1}=\tau_{2}=\tau_{3}=0$.

Note (for testing about blocks):
$\mathbf{F}^{*}=$

- We would also reject $\mathrm{H}_{0}: \sigma_{\beta}{ }^{2}=0$ and conclude there is significant variation among block effects.
- We can again make pre-planned comparisons using contrasts.

Example: Is Variety A superior to the other two varieties in terms of mean yield?
H_{0} :
\mathbf{H}_{a} :

Result:

