STAT 518 --- Section 2.1: Basic Inference

Basic Definitions

<u>Population</u>: The collection of all the individuals of interest.

• This collection may be large or even infinite.

Sample: A collection of elements of the population.

• Suppose our population consists of a finite number (say, N) of elements.

Random Sample: A sample of size n from a finite population such that each of the possible samples of size n was equally likely to have been obtained.

Another definition:

Random Sample: A sample of size n forming a sequence of n independent and identically distributed (iid) random variables

X1, X2, ..., Xn.

- Note these definitions are equivalent only if the elements are drawn with replacement from the population.
- If the population size is very large, whether the sampling was done <u>with</u> or <u>without</u> replacement makes little practical difference.

Multivariate Data

- Sometimes each individual may have <u>more than one</u> variable measured on it.
- Each observation is then a <u>multivariate</u> random variable (or <u>random</u> <u>vector</u>)

Xi = (Yil, Yiz, , Yik)

Example: If the weight and height of a sample of 8 people are measured, our multivariate data are:

 $X_{1} = (Y_{11}, Y_{12})$ weight $X_{2} = (Y_{21}, Y_{22})$ height $X_{3} = (Y_{81}, Y_{82})$

- If the sample is random, then the components Y_{i1} and Y_{i2} might not be independent, but the vectors $\underline{X}_1, \underline{X}_2, \ldots, \underline{X}_8$ will still be independent and identically distributed.
- That is, knowledge of the value of \underline{X}_1 , say, does not alter the probability distribution of \underline{X}_2 .

Measurement Scales

• If a varial	ble simply places an individual into one of
	ordered) categories, the variable is measured
on a nomi	nal scale.
Ewamalas	hair colors of people
Examples:	Majors of students
	Majors of students genders of people
• If the vari	iable is categorical but the categories have a
	ordering, the variable is on the ordinal
scale.	Ratings of movies «Grades of students Age Groups
Cour	se Grades of students
Examples:	Age Groups
	Likert-Type Scale (Strongly Agree, Agree,
• If the vari	able is numerical and the value of zero is
	ather than meaningful, then the variable is
on the int	erval scale.
	Temperature in C
Examples:	Temperature in °C Temperature in °F
	<u>ral</u> data, the interval (difference) between
	is meaningful, but <u>ratios</u> between two values
are not mea	
 If the vari 	able is numerical and there is a meaningful
zero, the va	riable is on the <u>ratio</u> scale.
	Height
Examples:	
	Speed
	Age
	Height Speed Age Weight Loss
	Weight Loss

	• With <u>ratio</u> measurements, the ratio between two values has meaning.
nomi	nal ordinal interval ratio
	Weaker ←
	• Most classical parametric methods require the scale of measurement of the data to be interval (or stronger).
	• Some nonparametric methods require ordinal (or stronger) data; others can work for data on any scale.
	• A parameter is a characteristic of a population.
	Examples: Population standard deviation of Population proportion p
	• Typically a parameter cannot be calculated from
	sample data.
	• A statistic is a function of random variables.
	• Given the data, we can calculate the value of a statistic.
	Examples of statistics: Sample mean X
	sample standard deviation s

Order Statistics

- The k-th order statistic for a sample $X_1, X_2, ..., X_n$ is denoted $X^{(k)}$ and is the k-th smallest value in the sample.
- The values $X^{(1)} \le X^{(2)} \le ... \le X^{(n)}$ are called the <u>ordered</u> random sample.

Example: If our sample is: 14, 7, 9, 2, 16, 18 then $X^{(3)} = 9$

Section 2.2: Estimation

- Often we use a statistic to <u>estimate</u> some aspect of a population of interest.
- A statistic used to estimate is called an estimator.

Familiar Examples:

• The sample mean:

$$X = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• The sample variance:

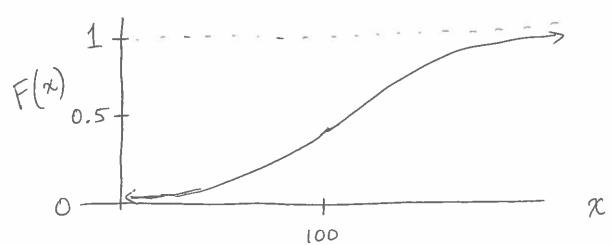
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

• The sample standard deviation:

$$S = \sqrt{S^2}$$

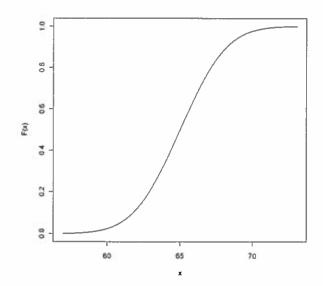
- These are point estimates (single numbers).
- An interval estimate (confidence interval) is an interval of numbers that is designed to contain the parameter value.
- A 95% confidence interval is constructed via a formula that has 0.95 probability (over repeated samples) of containing the true parameter value.

Familiar large-sample formula for CI for u:

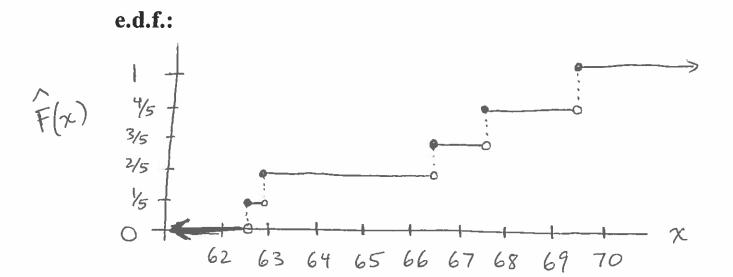

Some Less Familiar Estimators

• The cumulative distribution function (c.d.f.) of a random variable is denoted by F(x):

$$\mathbf{F}(x) = \mathbf{P}(X \le x)$$


 $\mathbf{F}(x) = \mathbf{P}(X \le x)$ • This is $\int_{-\infty}^{x} f(t)dt$ when X is a continuous r.v.

Example: If X is a normal variable with mean 100, its c.d.f. F(x) should look like:



- Sometimes we do not know the distribution of our variable of interest.
- The empirical distribution function (e.d.f.) is an estimator of the true c.d.f. it can be calculated from the sample data.

Example: Suppose heights of adult females have normal distribution with mean 65 inches and standard deviation 2.5 inches. The c.d.f. of this distribution is:

• Now suppose we do NOT know the true height distribution. We randomly sample 5 females and measure their heights as: 69.3, 66.3, 62.6, 62.9, 67.4

- The <u>survival function</u> is defined as 1 F(x), which is the probability that the random variable takes a value greater than x.
- This is useful in reliability/survival analysis, when it is the probability of the item surviving past time x.
- The Kaplan-Meier estimator (p. 89-91) is a way to estimate the survival function when the survival time is observed for only some of the data values.

The Bootstrap

- The nonparametric bootstrap is a method of estimating characteristics (like expected values and standard errors) of summary statistics.
- This is especially useful when the true population distribution is unknown.
- The nonparametric bootstrap is based on the e.d.f. rather than the true (and perhaps unknown) c.d.f.

Method: Resample data (randomly select *n* values from the original sample, with replacement) *m* times.

- These "bootstrap samples" together mimic the population.
- For each of the *m* bootstrap samples, calculate the statistic of interest.

- These *m* values will approximate the sampling distribution.
- From these bootstrap samples, we can estimate the:
 - (1) expected value of the statistic
 - (2) standard error of the statistic
 - (3) confidence interval of a corresponding parameter

Example: We wish to estimate the 85th percentile of the population of BMI measurements of SC high schoolers.

- We take a random sample of 20 SC high school students and measure their BMI.
- See code on course web page for bootstrap computations: