STAT 518 --- Section 4.4 --- Measures of Dependence for Contingency Tables

- We have seen measures of dependence for two numerical variables: for example, Pearson's and Spear man's correlation coefficient. (also Kendall's tau)
- For categorical data summarized in a contingency table, we have seen how to <u>test</u> for dependence between rows and columns.
- Suppose we wish to measure the <u>degree</u> (or perhaps <u>nature</u>) of the dependence?
- The size of the chi-square test statistic T tells us something about the degree of dependence, but it is only meaningful relative to the <u>degrees</u> of freedom.

Cramér's Contingency Coefficient

- A more easily interpretable measure of dependence than T is obtained by dividing T by its maximum possible value (for a given r and c).
- This maximum is N(q-1)where q = the smaller of r or c
- The square root of this ratio is called Cramér's coefficient:

$$V = \sqrt{\frac{T}{N(q-1)}}$$

Interpretations: Cramér's coefficient takes values between <u>0</u> and <u>1</u>.

- A value near 0 indicates little association between ow and column variables

 A value near 1 indicates strong dependence between row and column variables
- row and column variables
 - Cramér's coefficient is scale-invariant: If the scope of the study were increased such that every cell in the table were multiplied by some constant, Cramér's coefficient remains the same.

Example 1, Sec. 4.2:

	,		Score		
	Low	Marginal	Good	Excellent	
Private	6	14	17	9	
Public	30	32	17	3	
T		70.7	<u> </u>	.)	

T was
$$|7.29$$
 N was $|28$ q is $|28$

Cramér's coefficient =
$$\sqrt{\frac{17.29}{128(1)}} = 0.368$$

- We conclude there is moderate association between school type and score category.

> We can easily verify that Cramér's coefficient is unchanged if every cell count were multiplied by 10 (or any number).

Example 2, Sec. 4.2:

			<u>Snoring Pattern</u> Never Occasionally ≈Every Night					
			чеvег 	Occasionally	≈Every Night			
	Heart Disease	Yes	24	35	51			
	Disease	No	1355	603	416			
	T was	71.75	N	was 2484	q is 2			
	Cramér's coefficient = $\sqrt{\frac{71.75}{2484(1)}}$ = 0.17 > A mild association between heart disease and snoring pattern. The Phi Coefficient							
\rightarrow A	mild	associ	ation	between	heart disease	e and		
	Snori	ng pat	tern. The	e Phi Coeffi	cient			

- While Cramér's coefficient measures the <u>degree</u> of association, it cannot reveal the <u>type</u> of association (positive or negative).
- The type of association is only meaningful when the two variables have corresponding categories.
- The table must be set up so that the row category ordering "matches" the column category ordering.
- Phi is calculated as the <u>Pearson</u> correlation coefficient between the row variable and the column variable, if the categories are coded as numbers.

• For a 2 × 2 table, Phi =
$$\frac{ad - bc}{\sqrt{r_1 r_2 C_1 C_2}}$$
using
$$\frac{1}{2} \frac{2}{c d r_2}$$
Row
$$\frac{1}{2} \frac{a}{c} \frac{b}{d r_2} \frac{r_1}{r_2}$$

Interpretations: The phi coefficient takes values between <u>-|</u> and <u>|</u>.

- · A value near 0 indicates little association between row and column variables
- A value near +1 indicates a strong tendency for observations to fall in "alike" categories for both rows and columns
- · A value near -1 indicates a strong tendency for observations to fall in "unlike" categories for both rows and columns

Example 3 (Page 233-234 data tables):

Table A: Phi = (28)(7) - (0)(5) = 0.7035 > for mothers and $\sqrt{(28)(12)(33)(7)}$ = 0.7035 > fathers to have "alike" hair colors

Table B: Phi = -0.3015 -> moderate tendency for mothers and fathers to have "unlike" hair colors.

Table C: Phi = -0.0144 -> little association between mothers' and fathers' hair colors

Example 4: Hair Color / Eye Color:

Phi = 0.341 -> moderate tendency for people with light eyes to have light hair, and dark eyes to have dark hair.

• For a 2 \times 2 table, Phi equals Cramér's coefficient Vtimes the sign of (ad-bc)

Proof: For r=c=2, the X2 test statistic can be written as $T = \frac{N(ad-bc)^2}{r_1r_2c_1c_2}$. So $V = \frac{\sqrt{N(ad-bc)^2}}{r_1r_2c_1c_2}$.

Since
$$q = 2$$
, $V = \frac{V(ad - bc)^2}{V_{r_1 r_2 c_1 c_2}}$

Section 4.6 --- Cochran's Test

- In Sec. 5.8 we learned that a <u>block design</u> is simply an extension of a <u>matched-pairs design</u>.
- Instead of each of a <u>pair</u> of similar subjects receiving one of <u>two</u> treatments, we have each of a <u>block</u> of similar subjects receiving one of c treatments.
- When the measurements can be ranked (ordinal or stronger data), we have studied nonparametric analyses of both <u>paired</u> and <u>blocked</u> designs.
- When the measurements are binary, we have studied nonparametric analyses of <u>paired</u> designs.

Recall:

Paired Blocks

Binary

McNemar's Cochran's

Ordinal/Stronger Sign or Friedman

Signed-Rank or Quade

• Now we study block designs with binary measurements. The data are arranged as:

• Since the data are binary, all X_{ij} are either: 0 or 1

Hypotheses of Cochran's Test:

→ Ho: PI=P2=···= Pc within each block ((The c treatments are equally effective) where p; = probability of success (i.e., 1) for treatment i H1: Pi + Pj for some treatments i and j

Development of Cochran's Test Statistic

• Note that for large r, by the Central Limit Theorem, the j-th column sum $C_j = \sum_{i=1}^{n} X_{ij}$ is approximately normal $\frac{C_j - E(C_j)}{\sqrt{var(C_j)}} \sim N(0,1)$

and so
$$\frac{C}{\sum_{j=1}^{c} \left[\frac{C_{j} - E(C_{j})}{V \operatorname{var}(C_{j})}\right]^{2}} = \sum_{j=1}^{c} \frac{\left[C_{j} - E(C_{j})\right]^{2}}{V \operatorname{var}(C_{j})} \sim \chi_{c}^{2}$$

we estimate $E(C_j)$ by $C = \frac{1}{C} \sum_{i=1}^{C} C_i = \frac{N}{C}$

and estimate var(C_i) by $\sum_{i=1}^{r} \hat{p}_i (1-\hat{p}_i) \approx \frac{c}{c-1} \sum_{i=1}^{r} \frac{R_i}{C} (1-\frac{R_i}{C})$ = $\sum_{i=1}^{r} \frac{R_i}{C-1} \frac{(c-R_i)}{C}$ since under H_0 , p = probability of success is the samefor all treatments within a block \Rightarrow p in each row is estimated by proportion of successes in that row: $\frac{R_i}{C}$

So the test statistic is

$$T = \frac{C}{\sum_{j=1}^{c} \frac{(C_{j} - N_{c})^{2}}{\sum_{i=1}^{c} \frac{R_{i}(c - R_{i})}{C(c - 1)}} = \frac{C(c - 1)\sum_{j=1}^{c} \frac{C_{j}^{2} - (c - 1)N^{2}}{cN - \sum_{i=1}^{c} R_{i}^{2}}$$

- By estimating $E(C_j)$ and $var(C_j)$, we lose 1 degree of freedom, so the null distribution is χ^2 with $\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} d.f.$
- We reject Ho when T is excessively large.

Decision rule: Reject Ho if $T > \chi^2_{1-\alpha, c-1}$

• The P-value is found through interpolation in Table A2 or using R.

Note: For c = 2 treatments, Cochran's Test is equivalent to McNemar's Test.

Example: We test whether three rock climbs are equally easy. Five climbers attempted each of the three climbs, and their outcomes were recorded as 0 (failure) or 1 (success).

Data:

Ho: p= pz = p3 for each climber (climbs are equally easy)

H1: Pi ≠ Pj for some climbs i, j (difference in ease among the climbs)

Test statistic $T = \frac{3(3-1)(3^2+2^2+4^2)-(3-1)(9^2)}{(3)(9)-(2^2+2^2+1^2+2^2+2^2)} = 1.2$

2 1 0 1 2 2 3 0 0 1 1 2 1 0 1 2 5 1 0 1 2 3 2 4 9

Decision Rule and Conclusion:

Reject Ho if $T > \chi^2_{.95,2} = 5.99$. Since $1.2 \neq 5.99$ we fail to reject Ho. The climbs may be P-value 2.549 from R. equally easy.