STAT 518 --- Chapter 4 --- Contingency Tables

* Contingency tables are summaries (in matrix form) of
categorical data, where the entries in the table are
counts of how many observations fell into specific
categories (and combinations of categories).

* A one-way contingency table summarizes data on a
single categorical variable and has only one row.

* A two-way contingency table summarizes data on two
categorical variables and may have several rows and
several columns.

* Data on several categorical variables can be
summarized by multi-way contingency tables.

* We begin with another goodness-of-fit test.
Section 4.5: Chi-Squared Goodness-of-Fit Test
* Suppose we have a single categorical variable with ¢

categories. The cell counts can be arranged in a one-
way table.

Example 1: 95 adults were randomly sampled and
surveyed about their favorite sport. There were 6
categories. Their preferences are summarized:

Favorite Sport
Football Baseball Basketball Auto Golf Other | N
37 12 17 8 5 16 |95




p1 = proportion of U.S. adults favoring football

P2 = proportion of U.S. adults favoring baseball

p3 = proportion of U.S. adults favoring basketball
P4+ = proportion of U.S. adults favoring auto racing
ps = proportion of U.S. adults favoring golf

Pe = proportion of U.S. adults favoring “other”

* It was hypothesized that the true proportions are
P1, P2, p3, P4, Ps, ps) = (4, .1, .2, .06, .06, .18).

* We test our null hypothesis with the chi-squared
goodness-of-fit test:

: 3 .
Hi: at least one of the hypothesized probabilities is
wrong

The test statistic is:
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where O is the observed “cell count” for category j and
Ej is the expected cell count for category jif H, +rue .

* Under Hy, T has an asymptotic %* distribution with
c—14d.f.
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(large values of T — observed counts are very different
from the expected counts under Hy)

Assumptions: (1) The data are at least nominal.
(2) The random sample is sufficiently large. Koehler
and Larntz’s Rule of Thumb: -, .+ o . [/d . L
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* If Hy is true, expected cell count E; = FJ'.* /\)

Example 1 data:
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O; 37 2 17 % 5 L —> N=295
E;y 28 s (¢ 5.7 5.7 7.

Test statistic value:
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Sperts 15 reasonable.
* See chisq. test function in R to perform this test.



Chi-Squared Test with Unknown Parameters

* If our null hypothesis specifies the distribution except
for a certain number (say, k) of unknown parameters,
we can adjust the chi-squared test to account for this.

* The main difference is that when £ unknown
parameters are estimated from the data, the asymptotic

null distribution of T'is x*> with ~_ { - k d.f.

* The unknown parameters must be estimated using
“good methods” (see pp. 243-245): Typically the
method of moments or maximum likelihood estimators
work well.

Example 2: Page 244 lists data for the number of hits of
18 baseball players in their first 45 times at bat. Is it
reasonable that these data all follow the same binomial
distribution with n = 45 and some unspecified p?

* To estimate the unknown p, we use the estimate:
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* The expected cell counts can be found by the formula:

EJ = [3 F(X-’*_)) »Qgr tj':_ D)})Z)...) 45
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* Note that some Ej are very small; to alleviate this we
should combine cells:

Jf-7%?io Il 2 13 14 s (6 |7 =2I
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Ey 10 106 157 204 2.35 2,40 2.20 [32 136 0.92 0.57 0.6

Test statistic value:
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* While contingency tables describe discrete data, the
chi-squared test can be used to check goodness of fit for
continuous models as well.

 In that case, the continuous data must be discretized
by grouping into intervals.

* How to form the intervals is somewhat arbitrary.



Example 1 from Section 6.2: The data on page 445
consist of 50 observations. At a = 0.05, is it reasonable
to claim that the data follow a normal distribution?

We first estimate the two unknown parameters (|t and
c) of the normal distribution:

=X =55.04 &~ 5= 19.00

Let’s choose 5 intervals:

Interval L2 20) [20, 90) [40, 60) [60,30) [$0,/00]
0 O 12 (8 15 5
E; [, 624 .08 (7,434 I15.27  4.724

Test statistic value:
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Section 4.1: Tests for 2 x 2 Tables

» Consider the simplest form of two-way table:

(?— rows | 2 C@[\Lmns>

* Such a table could summarize data arising from

2 x2 —f-a.\o\e

- Having a single sample in which two  binary
variables  are measured on each individdal
- Having two samples in which -}-Le_ Same l:mccry

Variable.  is measured on each individual in

each sample.

Comparing Two Probabilities, Independent Samples

* Suppose we have two independent samples, with

respective sizes n; and n;. We classify each individual
in each sample into class 1 or class 2.

* Our data could be arranged in a 2 x 2 table as follows:

Sample. B Topuldion |

ga_mfle ‘Ff‘om FoFulO:HD“ Z

* The total number of observations is N = n; + n,.

Class | Class 2
B O Oy \ X
O, O, y
C, C | N



* OQur goal is to compare the probability of “success”
(Class 1) across the two populations:

F\ = Fv-olm\o{“‘\“y an observation from rot:u-[ﬂd?‘oni will Le 1w class l
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* This estimates how far apart p; and p; are.

 Scaling this by dividing by the estimated standard
error (see Eq. S, p. 187), we get the test statistic

Tl — \[—I\T—‘(Dn O*z.z —017— D'&‘)
\[71‘”7, C, C.

which has a stondard noma-fdistribution when Hj is true.
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» If T, is far from zero, this indicates that F: + Fz
o If T is far below zero, this indicates that F, < F 2
 If T is far above zero, this indicates that P2 P>

Decision Rules

H;: F‘#FL H;: Pr< P2 H;: F'>F"
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* Note: The normal approximation for T} is valid for
large samples, say, if

cachh of D“) D|2_) DQ_,) 0,, are at least 5.

Example 1: A survey was conducted of 160 rural
households and 261 urban households with Christmas
trees. Of interest was whether the tree was natural or
artificial. Is the probability of natural trees different
for rural and urban households? Use a = 0.05.

Data: Tree
Natural Artificial

Rural 64 96 (L0

Population
Urban 89 172 26|

g e o

153 2638 42 |




Ho: P‘ == FZ H;: Pl == FZ_

Test statistic:

T - Nz [(e)(172) — (76)(89 = [.22

V{lso)(ze ) (153)(269)

Re_jac.{' Ho i€ l-\"\> Z e = 1,96 (‘l‘oF,TaJale_ Al),
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determine whether a new lighting system worsened
midshipmen’s vision.

Data: Vision
Good Poor
Old 714 . 111 r SV
Lighting
New 662 154 316
N37C 265 164 )
Hp: F,' < Fi’— H;: Ft ~ Fz- j
Test statistic:
T = Vieu) D59 — (1n)(662)] o
l — = .78

\[(825)(516) (1370) (265)
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Fisher’s Exact Test

* In the previous examples, the row totals were the sizes
of the two samples, which are fixed before the data are
examined (i.e., they are not random).

'o;nﬂfz
* When we have a single sample in which two variables
are measured on each individual, the resulting 2 % 2
table has random row totals and randow column totals.
* We will cover that scenario in Section 4.2.

e In other situations, both the row totals and the column
totals may be :Ei xed prior to the data being examined.

« In this case of « £ixed margins”, Fisher’s Exact Test
is ideal.

Data setup:
C_@ lLLIMVl l Co lu.t«m 2

Row | e - % A
Row 2 - X N-r—ctx| N-v
c N-c¢ | N

* We again wish to compare:
P\ = frobonilHV ol an observation ju row 4 lae_mj c_(xgsf‘p.‘ep/
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Null Distribution
* Let p = probability an observation is in Column 1.
* Under Hy, this probability is the same whether the
observation is in Row 1 or Row 2, Then:

P(table results | row totals) = ( ; ) ( lg}:;) FC (l B F)Nﬂc
= C N~
P(column totals) ( [2} ) e ( I—F') .

— P(table results | row totals & column totals) =
DED i G
(¥) ¢~ U-p)™ (2)

* The decision is based on the P-value, which is found
differently depending on the alternative hypothesis:

H;: F':Fr?' H;: Fl < fz 1. FI>F?_
Ponl=2 [min (T ¢ TY)| Povad= P2 T vl
F(Ta > T;Ls)'i] F( g 2T;Ls>

* In all cases, reject Hg if the p-value < a.

Example 3: Fourteen new hires (10 male and 4 female)
are being assigned to bank positions (there are 4
account representative positions open and 10 (less
desirable) teller positions open. The data on page 190
summarize the assignments. If all new employees are
equally qualified, is there evidence that female hires
were more likely to get the account representative jobs?
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Data: /1, |¢s ) 9 [lo
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Test statistic: T:Lg = |
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* See fisher. test function in R to perform this test. wote Inkel7

+o get
* Fisher’s Exact Test may be used if the row totals acet. rep,
and/or column totals are random, but in this case it is Je bs.

o e Conservedive  than the z-test.

* Fisher’s Exact Test can also be viewed as an
alternative to the z-test when the large-sample rule is
not met, but the Exact Test lacks powex when
the sample size is very small. '

* Suppose we have several related (but not identical)
conditions in which sub-experiments are conducted,
each of which produces a 2 x 2 table.

o It is of interest to see whether rows and columns are
independent in each table.



Mantel-Haenszel Test

*» We assume we have k> 2 such 2 x 2 tables, each with
fixed row and column totals (although the test can be
done even with random totals).

Letpli':'?rOLtLLa‘l(“’? Q-F aon OLSEJ’Uq,hPP\ Mm row 1 Le"“’j
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Test statistic

* The null distribution is approximately standard
normal, tabulated in Table Al.



Decision Rules and P-value:

“[‘Lao _Tcu‘\e_cﬁ Lower - Tau |@1 UFFU -l_a;f:_l_f&__cp
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P-velue = P-velue = P-value =
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Example 4: Three groups of cancer patients were given
either a drug treatment or a control, and for each
patient, whether the outcome was successful was
recorded. Is there evidence that in at least one group,
the treatment produces a better chance of success than
the control? (Use a=0.05.)

Data: G rovp \ Gl“Oiﬁ 2 Grovp 3

e Success Feuilure,  Suecess Frilure  Suceess Fu lure
—T:epc\‘me,d' 1O I 9 O g O
Co ol 12 | I } 7 3

[av\ol FH' ?_PZL .Q;—r d[ L )
Test sta.tistic: Ty=1.0057 (k reposts TL{L)
P-value: ©,157 £, R

Conclusion: There 15 not e\“:i‘e”"‘cﬂ tat e
SUCCESS Iﬂ'olora.\:fl\-l? 1% better for Hie trechuent -
—]—\aa.u. —F@r‘ ‘H«t’. Control , o any ﬁroup,

* See mantelhaen. test function in R to perform this test.



