Section 5.11: Randomization Tests

* R.A. Fisher introduced the idea of using random
permutations of the data themselves as the null
distribution for a variety of tests.

* This idea is purely distribution-free and is fairly easy
to perform (at least approximately) with today’s
computing power.

* This type of test is especially appropriate when the
data do not represent a sample from some large
population, but rather represent the entire population.

Randomization Test with Two Independent Samples

* This is another way to test the hypotheses of the
Mann-Whitney Test: i
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* There are two mutually independent random samples,
X1, X2, ...y Xnand Y1, Y3, ..., Y. We assume the data
are at least interval in measurement scale.

* Note that if the two samples both have the same
distribution, any # of the total n + m observations might
as well serve as the first sample.



* So we could consider all possible selections of # values
from the n + m observations in the combined sample.

* If the number of these possible selections is very large,
we could repeatedly pick # values at random from the
n + m observations, many times.

* The test statistic is the sum of the » values in the first
(X) sample:
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* By considering all (or very many) ways of selecting the
n values and calculating T; each time, we obtain the null
distribution of T}.

 If our observed T} is very “unusual” or “extreme”
relative to this null distribution, we would reject Ho.

* The P-value is defined differently depending on H;:
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» Typically it is easiest to implement this method with R.



Example: Random samples of games in which an
American League team played with a designated hitter
and without a DH were taken. Is there evidence that
the mean number of runs scored by the team is greater
in the games with the DH? (Use a = 0.05.)
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Randomization Test with Paired Data

» This is another way to test the hypotheses of the
Wilcoxon Signed-Ranks Test:
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 Suppose we have n’ paired observations (X1, 1), (X5,
Y2), ... (Xu+, Yu'), and calculate the » nonzero
differences via
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* We assume the differences have symmetric
distributions, are mutually independent with the same
mean, and are at least interval in measurement scale.

* The test statistic is the sum of the positive differences:
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o If the null hypothesis is true, then each difference has
an equal chance to be positive or negative.

* Therefore we obtain all (or many) possible ordered
combinations of “+” and “-” signs and attach these to
our observed list of differences.

* We calculate T for each of these combinations of
signed differences, and this serves as our null
distribution of T3.

o If our observed T is very “unusual” or “extreme”
relative to this null distribution, we would reject Hy.

» The P-value is defined differently depending on H;:
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e Again, we implement this method with R.

Example: For 17 pairs of matched patients, each
member of the pair was given either Drug A or Drug B
in an attempt to reduce their cholesterol. The
cholesterol reductions were recorded. Do the two drugs
differ in terms of mean cholesterol reduction?
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Note: This approach can also work on a single sample 1+ €A
Y1, Y2, ..., ¥a, to test whether the median of ¥ equals chol. redec.
some constant number m.

* To test Ho‘mea! (Y):Wl
we let all X; = m, i.e., form the pairs (m, Y1), (m, Y3), ...,
(m, Y,) and carry out the randomization test as before.

Comparison to Competing Tests

e Randomization tests work well in many situations, and
permit other reasonable choices of test statistic.

* For heavy-tailed population distributions,
randomization tests tend to have _move power
than parametric tests and _|¢<¢ power than rank-
based tests.

* For large sample sizes, the power of the randomization
tests resembles the power of the parametric tests.




Section 5.12: The Rank Transformation

e Many procedures in Chapter 5 are based on using
ranks instead of raw data values.

» Several of these test procedures (Signed-rank, M-W,
K-W) actually produce equivalent results to simply
performing the respective classical parametric test on
the ronks rather than on the actual data.

* In general, when data are clearly nonnormal or have
outliers, it is usually a reasonable approach to rank all
the data and then perform the usual parametric
procedure on the ranks.

» Advanced multivariate methods such as multiple

regression and discriminant analysis can be adapted to
data having outliers by:
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 This produces more rvaS‘l’ procedures.

e In multiple regression, prediction can be accomplished
by predicting the rank for a given individual and
transforming this back onto the data scale via
interpolation within the observed Y-values.



