# STAT 518 --- Chapter 5: Methods Based on Ranks

- The <u>rank</u> of an observation is its position in the <u>ordered</u> sample (ordered from smallest to largest).
- For example, in the sample

the corresponding ranks are

- Many of the methods in Chapter 5 rely on the <u>ranks</u> of the sample observations rather than the actual data values.
- This tends to reduce the effect of outliers, which makes rank-based methods ideal for data coming from heavy-tailed distributions.

## Section 5.7: One-Sample or Matched-Pairs Data

- The t-test is a common parametric procedure to test whether the mean of a population equals some specified number.
- When we have paired data, we can test whether the two random variables have the same mean using the paired t-test.
- These classical tests require the sample (or the sample of differences) to come from a <u>normal</u> distribution.

- If the normality assumption is questionable, but if our data (or differences) come from a <u>symmetric</u> distribution, and are measured on at least an <u>interval</u> scale, then the Wilcoxon Signed Ranks Test may be used.
- Note that earlier we learned the <u>Sign</u> Test as a procedure that could be used in this situation.
- The <u>Sign</u> Test did not require a <u>symmetric</u> distribution.

### **Checking for Normality/Symmetry**

- A quick graphical check for whether data are normally distributed is the normal Q-Q plot.
- Sample quantiles are plotted against expected quantiles if the data were truly normal.

#### Using the R function qqnorm:

A roughly straight pattern → approx normal

Bow-shaped curved pattern → skewed

right: left:

S-shaped snaking pattern → either heavy or light tails

heavy: light:

• See examples on the course web page.

## Wilcoxon Signed Ranks Test

- Suppose we have n' paired observations  $(X_1, Y_1), (X_2, Y_1)$  $Y_2$ ), ...,  $(X_{n'}, Y_{n'})$ .
- The differences  $D_i$  are defined as

$$Di = Y_i - X_i$$
 for  $i=1,...,n'$ 

• The absolute differences are then

$$|D_i| = |Y_i - X_i|$$

- We remove any observations for which  $D_i = 0$ , leaving n untied pairs, where  $n \le n'$ .
- We  $\underline{rank}$  the n remaining pairs from 1 to n from the smallest absolute difference to the largest.
- If several pairs have the same absolute difference, we use midranks (average the ranks that would have been assigned) for these.

• For i = 1, ..., n, the signed ranks are

• For 
$$i = 1, ..., n$$
, the signed ranks are

$$\begin{cases}
\text{rank assigned to } (X_i, Y_i) & \text{if } D_i > 0 \\
\text{negative of rank} \\
\text{assigned to } (X_i, Y_i), & \text{if } D_i < 0 \\
\text{of } (\text{if } Y_i < X_i)
\end{cases}$$
• The test statistic is

$$T + \text{the sum of the positive signed ranks.}$$

negative of rank assigned to 
$$(X_i, Y_i)$$
, if  $D_i < O$  (if  $Y_i < X_i$ )

- If  $T^+$  is large, it is evidence that the  $Y_i$  tends to be  $\_$  arger than the  $X_i$ .
- If  $T^+$  is small, it is evidence that the  $Y_i$  tends to be smaller than the  $X_i$ .
- The null distribution (when  $E(D_i)=0$  for all i) has been calculated.
- Table A12 gives <u>lower</u> quantiles of the null distribution when none of the absolute differences are tied and when  $n \le 50$ .
- Upper quantiles can be found via the formula:

$$W_{p} = \frac{n(n+1)}{2} - W_{1-p}$$

• If there are many ties or if n > 50, the test statistic using all the signed ranks

$$T = \sum_{i=1}^{n} R_i$$
is used. 
$$\sqrt{\sum_{i=1}^{n} R_i^2}$$

• This T has an  $\hat{a}$  proximately standard normal null distribution, so Table A1 is used.

# Two-tailed Lower-tailed Upper-tailed $H_0: E(D) = D$ $H_0: E(D) \ge D$ $H_0: E(D) \le D$ $H_0: E(D) \ge D$

• The corresponding decision rules in each case are:

Reject Ho if Reject Ho if Reject Ho if 
$$T^+ < W_{\alpha/2}$$
 or  $T^+ < W_{\alpha}$   $T^+ > W_{1-\alpha}$ 

- If the large-sample tests are used, the decision rule is based on T and the normal quantiles from Table A1.
- P-values can be approximated by interpolating within Table A12 or by the normal approximation.
- In practice, software is the best way to get p-values.

Example 1: 12 sets of twins were scored for "aggressiveness" on a personality test. The aggressiveness data are given on page 355. Can we conclude that the firstborn twins have greater median aggressiveness than the second twins? (Use  $\alpha = .05$ .)

Let 
$$X = first \ Y = second \ D = Y - X$$

Ho:  $E(D) \ge 0$ , Hi:  $E(D) < 0$ 

Di:  $+2 +6 -1 -4 +5 \ 0 -12 -1 -5 +9 -7 -15$ 
 $|Di| = 2 \ 6 \ 1 \ 4 \ 5 - 12 \ 1 \ 5 \ 9 \ 7 \ 15$ 

Rank of  $3 \ 7 \ 1.5 \ 4 \ 5.5 - 10 \ 1.5 \ 5.5 \ 9 \ 8 \ 11$ 
 $|Di| = 3 \ 7 \ -1.5 \ -4 \ 5.5 - -10 \ -1.5 \ -5.5 \ 9 \ -8 \ -11$ 

Pecision rule: Reject Ho if  $T^+ < W_{\infty} = W.05 = 14 \leftarrow from \ Table Alignith n=11$ 
 $T^+ = 3 + 7 + 5.5 + 9 = 124.57$  So we fail to reject Ho

 $T^{+}=3+7+5.5+9=24.5$ , so we fail to reject Ho. • See the R function wilcox. test for performing this

test in R.

 Example 2: Problem 1 on page 365 describes a study in which the reaction time of 20 randomly sampled individuals was measured, both before and after an alcoholic drink for each person. Is there evidence that

the alcohol alters reaction time? (Use 
$$\alpha = .05.$$
)  $\longrightarrow \%_2 = .025$ 
Let  $X = before Y = after D = Y - X$ 
Ho:  $E(D) = 0$  vs.  $H_1$ :  $E(D) \neq 0$ 
 $N = 18$  (2 pairs tied)

From Table A12  $\longrightarrow$  Reject Ho if  $T^+ < 41$ 
or if  $T^+ > 171 - 41 = 130$ 

$$\frac{n(n+1)}{2}$$
 $M = 130$ 

$$\frac{n(n+1)}{2}$$
From R

From R: T+=154, so we reject Ho. Approx P-value = .003 We can conclude that alcohol alters reaction time, on average One-sample data

- Suppose instead of paired data  $(X_i, Y_i)$ , we had a single sample  $Y_1, Y_2, ..., Y_n$ .
- Suppose we wish to test whether the median of Y equals some constant number m.

• Our set of hypotheses would be one of:

Ho: 
$$med(Y) = m$$
 | Ho:  $med(Y) \ge m$  | Ho:  $med(Y) \le m$  | H;  $med(Y) \ne m$  | H;  $med(Y) < m$  | H;  $med(Y) > m$ 

- We can let all  $X_i = m$ , i.e., form the pairs  $(m, Y_1)$ ,  $(m, Y_2)$ , ...,  $(m, Y_n)$  and carry out the signed-rank test as before.
- If  $T^+$  is large, it is evidence that the  $Y_i$ 's tend to be  $\underline{|arger|}$  than m.
- If  $T^+$  is small, it is evidence that the  $Y_i$ 's tend to be smaller than m.

Example 3: Pollution measurements were taken on a site downstream from an industrial plant. Is there  $\alpha = .05$  evidence that the median pollution level is less than 34 ppm?  $H_0: med(Y) \ge 34$   $H_1: med(Y) < 34$ 

n=15. Table A12 -> Reject Ho if T+<31 W.05. T+=5, so reject Ho. Conclude the median pollution is less than 34 ppm. Approx P-value from R: .00098

#### Confidence Interval for the Median Difference

- Consider the sample  $D_1, D_2, ... D_n$  (where  $D_i = Y_i X_i$ , or where the  $D_i$ 's are merely a single sample).
- If the  $D_i$ 's are mutually independent, have the same median, have symmetric distributions, and are measured on at least an interval scale, the following method produces a confidence interval for the median of  $D_i$ 's with coverage probability at least  $1-\alpha$ .

• Consider all possible averages 
$$\frac{D_i + D_j}{2} = \frac{n(n+1)}{2}$$
 (including when  $i = j$ )

• Find  $W_{\alpha/2}$  from Table A12. Then the

Way the smallest and Way the largest of these averages

form the lower and upper bounds for the confidence interval for the median difference.

• This is fairly computationally intensive, and the CI is best found using software: See the WSRci function on the course web page.

Example 2 again: Find a 95% CI for the median difference in reaction time with alcohol and without.

Using WSRci function:

95% CI: [0.015, 0.06]. We are 95% confident that the true median reaction time is between 0.015 and 0.06 seconds more with alcohol than without.

Example 3 again: Find a 95% CI for the median

Example 3 again: Find a 95% CI for the median pollution level.

95% CI: [27.85, 32.0]

- We are 95% confident that the true median pollution level is between 27.85 and 32.0 ppm-

#### **Some Notes**

- While the t-test (or paired t-test) requires <u>normally</u> distributed data, the Wilcoxon signed-rank test requires only <u>symmetric</u> data.
- Therefore the signed-rank test may be used with data having various types of distribution:

discrete de las long as we heavy-tailed be have symmetry

- In particular, the t-test lacks power when outliers exist in the data.
- The sign test is appropriate for any data measured on an ordinal or stronger scale.
- If the  $Y_i$  and  $X_i$  have identical symmetric distributions except for a shift in the means, the <u>Wilcoxon signed-rank test</u> has AT WORST an A.R.E. of 0.864 relative to the t-test.
- At BEST, the Wilcoxon signed-rank test has an A.R.E. of correlative to the t-test.

#### Efficiency of the Signed Rank Test

Population A.R.E.(signed-rank vs. t) A.R.E.(signed-rank vs. sign)

Normal 0.955 1.5

Uniform (light tails) 1.00 3.00

Double exponential (heavy tails) 1.50 0.75

- However, note that the A.R.E. is specific to <u>large</u> samples.
- For small samples from the double exponential distribution, the signed-rank test is <u>more</u> efficient than the sign test.