STAT 518 --- Nonparametric Density Estimation

» The probability density function (or density) of a

continuous random variable X describes its probability
distribution.

e We denote the density as ‘F ( ?C)
» Note that if F(x) is the c.d.f. of X, then
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Two important properties of density functions

(1) They are always V\OY\V\EﬂCCHVQ- : #[’X)?_ 0 Lir “[/y

(2) The total area under a density curve is always 1

* In real data analysis, we do not know the true density,
so we can estimate it using sample data X, X3, ..., Xu.

Parametric approach: Assume a specific functional

form (e.g., normal, gamma, etc.) for the density and use

the sample data to estimate certain uv )(now'r\ pammeﬁ?S
[

Example: Could assume the density is normal and get
sample estimatesof _ 4 and o* .



* The nonparametric approach is to make very few
assumptions about the functional form of the density.

Histograms

* A simple density estimator is a histogram.

* In introductory statistics, we study the Apro,que,wa/
histogram having bins with bars whose height is the '
count of sample observations falling in that bin.

* If we rescale the heights of each bar so that the total
combined area within all the bars is 1, we have a
histogram density estimate.

e Assume there are K bins, each of width /:
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* In general, this histogram iS'
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Picture (K=5,h =2):




* The total combined area within all bars is
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* The R function hist produces such histograms.

* The choice of bin width /z determines the number of
bins, which can affect the appearance of the estimate.

* A simple rule of thumb for choosing / is derived from
a normal density:
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* Note: the sample standard deviation s is a consistent
estimator of o, as is IQR / 1.34 when the true density is
normal.

Let

* In reality, this provides a good initial choice of /,
which may then be adjusted by trial and error.

* Choosing /i too small produces many bins and a
density estimate that is too v o uq R

* Choosing / too large produces few bins and a density
estimate thatis bvers thlle‘ue .
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* We could also let the bin width vary across bins,
choosing a lm"ge width in regions where we expect
the density to be flatter and a _sm |l width in regions
where we expect the density to be spiky.

Kernel Density Estimation

* An obvious drawback to the histogram density
estimate is thatitis not _Smoo

» A kernel density estimate (k.d.e.) produces a smooth
estimate and works similarly to the kernel regression
method.

* As n — oo, the k.d.e. will approach the true density f(x)
more quickly than the histogram will.
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Recall: ‘P(’X) = :{‘_1_ F(O’C) = l\lizo

-Plug in the e.d.f. forF()to obtain:
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* This is exactly the same as
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— a kernel estimate with a in f‘pvf m kernel function.

* However, with the _Uwn. ‘porm kernel, the resulting
density estimate is not smooth.

* Better choices of kernel function K(*) include:
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* Let K() in the above k.d.e. formula be a standard
normal kernel function.
e Then for, say, h =1:
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» We see at each point x, the k.d.e. —? (x) is the average

of normal densities, centered at cc ). - yalie
L

e Sample values near x will contribute | <lo.Hal 17
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» Sample values far from xwill | , | 17 cordrihute
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Role of the Bandwidth /
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» If /1 decreases, these normal densities become *H) ’ev‘
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* Rule of thumb for choosing /2 (again based on the true
density being normal):

Let If\ ~ ‘-LD% 2
Y-\/S'
where .
g = Min S S E% i
) 1.3Y

* In reality, this provides a good initial choice of 4,
which may then be adjusted by trial and error.



» The density function in R produces a kernel density
estimate.
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 As with kernel regression, kernel density estimators
tend to be biased at the left and right edges: looma[xr Y bias

e The k.d.e. also has a tendency to be too flat (not rise or
dip enough) in the peaks and valleys of the density.

 An option is to use a bandwidth that varies over the
region (being |aracc  where the density is expected
to be flatand s ller  where the density is
expected to have bumps).




