
STAT 704 --- Preliminaries:  Basic Inference 

 

Basic Definitions 

 

Random variable: A function that maps an outcome from some 

random phenomenon to a real number.   

• A r.v. measures the result of a random phenomenon. 

 

Example 1:  The weekly income of a randomly selected USC 

student. 

Example 2:  The number of accidents in a month at a busy 

stretch of highway. 

 

• Every r.v. (say, Y)  has a probability density function (pdf) 

f(y) associated with it. 

For a discrete r.v. Y,   

 

For a continuous r.v. Y, and for any numbers a < b, 

 

 

Expected Value:  The expected value of a r.v. is the mean of its 

probability distribution.  

 

For a discrete r.v. Y,   

 

 

For a continuous r.v. Y, 

 

 

Note:  If a and c are constants, 

 

 

 

 

 



Variance:  The variance of a r.v. measures the “spread” of its 

probability distribution.  

 

var(Y) =  

 

= 

Equivalently, 

 

Note: If a and c are constants, 

 

 

 

 

 

 

Note:  The standard deviation of a r.v. Y is  

 

Example:  Suppose Y (the high temperature in Celsius of a 

random September day in Seattle) has expected value 20 and 

variance 10.  Let W = the high temperature in Fahrenheit. 

Then  

 

 

 

 

Covariance:  For two r.v.’s Y and Z, the covariance of Y and Z 

is  

 

 

 

• If Y and Z have _________ covariance, then small values of Y 

tend to correspond to ________ values of Z (and large values of 

Y to ________ values of Z). 

 

Example: 



• If Y and Z have _________ covariance, then small values of Y 

tend to correspond to ________ values of Z (and large values of 

Y to ________ values of Z). 

 

Example: 

 

Note: If a1, c1, a2, and c2 are constants,  

 

 

Note:  

 

• The correlation coefficient between Y and Z is similar, but is 

scaled to be between –1 and 1: 

 

 

 

If corr(Y, Z) = 0, then we say 

 

 

 

Independent Random Variables:  Informally, two r.v.’s Y and 

Z are independent if knowing the value of one r.v. does not 

affect the probability distribution for the other r.v.  

 

Note: If Y and Z are independent, then 

 

• A covariance of zero does not imply independence in general, 

but… 

 

• If Y and Z are normal r.v.’s, then 

 

 

 

 

 



Linear Combinations of Random Variables 

• Suppose nYYY ,,, 21   are r.v.’s and naaa ,,, 21   are constants. 

 

Then 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important Example:  Suppose nYYY ,,, 21   are independent 

r.v.’s, each with expected value  and variance 2.  Then 

consider the sample mean 
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Central Limit Theorem:  When we take a large sample of size 

n from a population with mean  and variance 2, and n is 

“reasonably large”, then Y has an approximately normal 

distribution with mean  and variance 
n

2
. 

 

The Normal Distribution:  A r.v. Y having a normal 

distribution has the pdf: 
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• The two parameters of a normal distribution are its mean  

and its variance 2.   

• If Y ~ N(, 2), then the standardized r.v. 

 

 

Note:  If a and c are constants and Y is a normal r.v., then 

 

 

Note: If nYYY ,,, 21   are independent normal r.v.’s and 

naaa ,,, 21   are constants, then nnYaYa 11  

 

 

Example:  Suppose nYYY ,,, 21  are a random sample from a 

normally distributed population with mean  and variance 2.  

Then 

 

 

Other Related Distributions 

Chi-square:  If ZZ ,,1  are independent N(0, 1) r.v.’s, then  

 

 

 



t-distribution:  If Z and X are independent r.v.’s and  

Z ~ N(0, 1) and X ~ ,2

 then 

 

 

 

 

 

F-distribution:  Suppose X1 and X2 are independent r.v.’s and  

X1 ~ ,2

1
  X2 ~ .2

2
  Then 

 

 

 

Note:  The square of a  

 

Proof: 

 

 

A Model for a Single Sample 

• Suppose we have a random sample nYYY ,,, 21   of 

observations from a normal distribution with unknown mean  

and unknown variance 2.   

• We can model this as: 

 

 

 

• Often we wish to perform inference (confidence interval or 

hypothesis test) about the unknown population mean . 

 

Let 

 

 

 

 



Fact: 

 

Heuristic “Proof”: 

 

 

 

 

 

Fact:  
n

Y

/


 has a                   distribution. 

Therefore, look at: 

 

 

 

 

 

 

 

We see that 
ns

Y

/


 has a                   distribution. 

(Note that Y  and s2 are independent when we sample from a 

normal distribution.) 

 

So, under model (*), 

 

 

 

 

 

 

 

 

 



CI Example (Summer temperatures data): 

 

 

 

 

 

 

 

Interpretation: 

 

 

 

(See R example on course web page.) 

 

Hypothesis Testing 

• We may also perform a t-test to determine whether  may 

equal some specified value, say 0. 

• We decide whether to reject a null hypothesis (H0) about  on 

the basis of our sample evidence (as measured by our test 

statistic). 

• Let 

 

 

 

Three types of test: 

 

 

 

 

• Note that under H0 (if  really is 0), then t* has a  

• If the t* that we observe is highly unusual (relative to the  

Distribution), we will reject H0 and conclude Ha.  

• Let  = the significance level = maximum allowable 

probability of rejecting H0 when H0 is true. 



Rejection rules 

Two-sided: 

 

 

One-sided (Ha: “<”): 

 

 

One-sided (Ha: “>”): 

 

 

P-value approach:  We can also measure the evidence against 

H0 using a P-value, which is the probability of observing a test 

statistic as extreme or more extreme than the test statistic 

value that we did observe, if H0 were true. 

• A small P-value indicates strong evidence against H0. 

Rule: 

 

 

• The calculation of the P-value depends on the alternative 

hypothesis: 

Ha: “≠” 

 

 

Ha: “<” 

 

 

Ha: “>” 

 

 

Example:  We wish to test whether the true mean high 

temperature is greater than 75 degrees, using  = 0.01. 

 

 

 

 



Conclusion: 

 

 

 

 

Connection between CIs and Two-sided tests 

Fact: An -level two-sided test rejects H0:  = 0 if and only if 

0 falls outside a (1 – )100% CI about . 

 

Previous example:  At  = 0.10, would we reject H0:  = 73 and 

conclude Ha:   73?  

 

At  = 0.10, would we reject H0:  = 80 and conclude  

Ha:   80? 

 

At  = 0.05, would we reject H0:  = 80 and conclude  

Ha:   80? 

 

 

 

Paired Data 

 

• When we have two paired samples (when each observation in 

one sample can be naturally paired with an observation in the 

other sample), we can typically use our one-sample methods to 

conduct inference on the mean difference. 

 

Example:  7 pairs of mice were injected with a cancer cell.  

Mice within each pair came from the same “litter” and were 

therefore similar biologically.  For each pair, one mouse was 

given an experimental drug and the other mouse was 

untreated.  After a specific time, the tumors were weighed. 

 

 



Let Y1j =  

 

Let Y2j =  

 

 

• Since these samples are paired, we take the differences 

 

 

If the differences follow a normal distribution, then we have 

the model: 

 

 

 

• To test whether the treatment results in a lower mean tumor 

weight, we can test: 

 

 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Two Independent Samples 

• Assume we now have two independent (not paired!) samples 

from two normal populations.  Label them sample 1 and 

sample 2. 

 

Model: 

 

Note:  Both populations have the same variance, 2. 

Note:  The two sample sizes (n1 and n2) may be different. 

 

An estimator of the variance 2 is the 

 

 

 

 

 

Then 

 

 

 

 

• Our parameter of interest is the difference in the two 

population means, 1 – 2.  

 

A (1 – )100% CI for 1 – 2 is 

 

 

 

 

• Often we wish to test whether the two populations have the 

same mean. 

• We test 

against one of the following alternatives, using the test statistic: 

 



Ha:   Rejection Rule:   P-value 

 

 

 

 

 

 

 

Case of Unequal Variances 

 

• What if it is not reasonable to assume the two populations 

have the same variance?  Suppose 

• Use  

 

• The standard deviation part of the test statistic is now 

 

 

 

• Our test statistic under H0 has an approximate t-distribution 

with d.f. given by an approximation formula (Satterthwaite’s 

formula or Welch’s formula). 

 

Model: 

 

 

• We can formally test 
2

2

2

10 :  H  using an F-test, but in 

practice graphical methods, e.g., box plots, are often employed. 

 

• R and SAS perform the two-sample t-test, with options for 

the equal-variance case and the unequal-variance case. 

 

 

 



Example:  Testing pollution levels: 10 pollution measurements 

were taken upstream of a chemical plant, and 15 

measurements were taken downstream.  Do the mean pollution 

levels differ ( = 0.05)? 

 

 

 

 

 

 

Note:  Recall our t-procedures require that the data come from 

a normal population. 

• Fortunately, the t-procedures are robust:  They work 

approximately correctly if the population distribution is 

“close” to normal. 

• Also, if our sample size is large, we can use the t procedures 

even if our data are not normal (related to CLT). 

• If the sample size is small, we should perform some check of 

the normality assumption before using t-procedures. 

 

Normal Q-Q plots 

 

• To use the t-procedures (test and CI), the assumption that the 

data come from a normal population must be reasonable. 

• Could check with a  

 

(Verify distribution is 

 

• More precise plot:  Normal Q-Q plot. 

• Plots quantiles of data against suitably chosen standard 

normal percentiles. 

• If Q-Q plot resembles a straight line, then the normal 

assumption is reasonable. 

 

 



• Possible violations: 

 

 

 

 

 

 

 

 

 

 

 

 

Nonparametric Tests 

 

• If the data do not come from a normal population (and if the 

sample size is not large), we cannot use the t-test.   

• Must use nonparametric (“distribution-free”) methods. 

 

Sign Test 

• For the sign test, we assume the data come from a continuous 

distribution. 

Model: 

 

 

• We test  

 

Test statistic is 

 

 

Under H0, B* follows a  

 

• Reject H0 if B* is an “unusual” value relative to this 

distribution. 

 



• Alternative could be  

 

 

 

Example:  (Eye relief data) 

 

 

 

 

 

Wilcoxon Rank Sum Test (also known as Mann-Whitney Test) 

• This is a test comparing the medians of two independent 

samples from continuous populations. 

• We assume the two population distributions are identical 

except for a possible shift (if 

 

 

 

 

 

 

 

Model: 

 

 

 

• We test  

 

 

 

 

Method:  Rank the combined sample  

 

• The “rank sum statistic” W is the sum of the ranks of the 

second-sample values in the combined sample. 



• If W is very large, this is evidence that  

 

 

• If W is very small, this is evidence that  

 

Example (Dental measurements): 

 

 

 

 

 

• Wilcoxon rank-sum test can also test whether one population 

is stochastically larger than another. 

 

Wilcoxon Signed-Rank Test 

 

• This assumes the data come from a continuous, symmetric 

distribution. 

• Again, we test 

 

• Test statistic uses 

 

 

• The signed rank for observation i is 

 

 

 

• The “signed rank statistic” is 

 

 

 

• If W+ is very large, this is evidence that  

 

 

• If W+ is very small, this is evidence that  



• Both the sign test and the signed-rank test can be used with 

paired data (e.g., we could test whether the median difference 

is zero). 

 

Example (Weather station data): 

 

 

 

 

 

 

 

• The sign test and signed-rank test are more flexible than the 

t-test (require less strict assumptions), but the t-test has more 

power when the data truly have a normal distribution. 


