Nonlinear Functional Forms
Piecewise Regression

•This is another use of indicator variables in a linear model.

• Piecewise regression is used when the relationship between Y and X is approximated well by several different linear functions in different regions.

Pictures:

Data Example (Raw materials)

Y = Unit cost (dollars) of materials
X = shipment size
• Suppose there is a significant decrease in prices for shipments larger than Xp = 500.
• Here, Xp represents a ___________ __________________.

• See scatterplot for raw materials data.

A model to fit a two-piece continuous linear function:

• We see 

• So when X1 ≤ 500, we have:

• When X1 > 500, we have

• These are two linear pieces with

• Note:  2 measures

• Note plugging X1 = 500 into each equation, we get

• Fitting the regression model is done through least squares, regressing Y against

Example (raw materials):

Fitted equation: 

Interpretation of b1 and b2: 

Extensions:  This approach works for 3 or more pieces.  If we have changepoints at X = 500 and X = 800, the model is:

• We can fit a piecewise regression if we believe there is a discontinuity at the changepoint.

Example:

We use the model:

Picture:

• Again, 2 measures the difference in the slopes of the two pieces.

• Here, 3 measures the 

• If 3 = 0, 

(can test H0: 3 =0)

Example (raw materials):

Fitted equation: 

• If the changepoint Xp is unknown, one simple approach is to fit piecewise regressions with a series (grid) of changepoint values and pick the changepoint that produces the smallest SSE (see R function).

Chapter 13:  Nonlinear Regression
• Sometimes the data or underlying theory show a nonlinear relationship between Y and X.
• We could try polynomial regression or using transformations of the variables, but sometimes these are also unsatisfactory.
(See example scatterplot of injured patient data).

• A nonlinear regression model is of the form:
where the specified mean response function

• Sometimes a nonlinear mean response function is __________

______________, i.e., it can be linearized by a transformation.

Example:

• If i* has “nice” characteristics (normality, constant variance), then it’s better to work with the linearized model.

• But if our model has the additive error structure:

and this i is normal with constant variance, then linearizing will ruin the “nice” error structure.

• It’s better to use nonlinear regression in that case.

• Some nonlinear models are not intrinsically linear:
Examples:

(1)

(2)

• For these models, we still assume Y is a continuous (usually normal) r.v., but the deterministic part of the relationship between Y and X is nonlinear.
Fitting the Nonlinear Model (Estimating the Parameters)

• Again, we can use least squares:

• Or assuming normal errors, we can use maximum likelihood.

Problem: It is not typically possible to analytically derive nice expressions for the regression estimates.
• We must use numerical optimization methods to either minimize the least-squares criterion or maximize the likelihood.
• These methods iteratively search across possible parameter values until the “best” estimates are found.
Search methods available in SAS:

(1)

(2)

(3)

Description of Gauss-Newton Method

• First we must choose initial estimates

• These may be selected based on previous knowledge, theoretical expectations, or a preliminary search.

• (In practice, we may use several initial guesses.)

• Use Taylor series approximation of mean response function (a Taylor series expansion around 

• Then we can write the matrix “equation”:

• Estimate the unknown (0) by least squares, obtaining 

b(0) is the 

• Then let our “revised estimates”

• Compare 

• If SSE(1) is lower (better), then repeat the process, get

• Continue procedure until the difference in SSE: 

SSE(s + 1) –  SSE(s), becomes negligible.

• Use “final” values

Note:  The Gauss-Newton method often works well, especially with well-chosen initial values.

• Sometimes the method may take a long time to converge or may not converge at all.

• The final estimates may minimize the SSE only locally, not globally.

Other Search Methods:

• “Steepest Descent” tends to work better when the initial values are far from the final values.  It iteratively determines the direction in which the regression coefficient estimates should be adjusted.
• The Marquardt method is a compromise between Gauss-Newton and Steepest Descent.
• The methods may be useful if the Gauss-Newton method runs into convergence problems.

Common Nonlinear Regression Models

(and their Characteristics)

An exponential model with 2 parameters:
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 this looks like:
• When X = 0, 
• As X → ∞, 
• Slope of graph when X = 0 is 

Another exponential model with 2 parameters:
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 this looks like:

• At X = 0, 

• As X → ∞, 

• Using another parameter could shift the function up or down:
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• The plot looks very different for 
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(see Fig. 13.1(a), p. 512)

• Exponential models are often used in growth/decay studies.

• A Logistic Regression Model allows for an “S-shaped” curve:
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 this looks like:

• At X = 0, 

• As X → ∞, 
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 this logistic curve is 

• The Logistic Model is often used for population studies.

The Michaelis-Menten Model is a popular nonlinear model for enzyme kinetics to relate the initial reaction rate Y to the initial substrate concentration X.
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• When X = 0, 

• As X → ∞, 

• At X = 2, 

• Knowledge of the meaning of the parameters allows us to use “reasonable” initial values for their estimates.

Example (Injured Patients Data):

Y = prognosis for recovery (large is good, 0 = worst)

X = number of days in the hospital

• We expect patients with longer stays in the hospital to have ______________ diagnoses.

• We expect Y to be ________________ when X = 0 (no days in hospital).

• Plot of data shows

• We will use the model:

• Gauss-Newton method in SAS yields final estimates

Estimated regression function:

Inference About Parameters

• Standard methods of inference are not valid in nonlinear regression.  

• But for large samples, estimators are approximately normal and approximately unbiased.

• In this case, we can use Hougaard’s statistic (which estimates the skewness of the estimators’ sampling distributions) to check their approximate normality.

Rules of thumb:

• Bootstrapping can also be useful for assessing the nature of the sampling distribution of the estimators.

Notes:

• R2 in nonlinear regression is not a meaningful statistic.

• Residual plots (against fitted values), and a normal Q-Q plot of the residuals, can again be useful for diagnostics.
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