Example of Bayesian Model Selection

» Example in R with Oxygen Data Set

» We can consider all possible subsets of set of predictor
variables:

» We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms

appear):



The Posterior Predictive Distribution of the Data

» Suppose we have built our Bayesian regression model using
response data y and explanatory data matrix X.

» Suppose we consider future observations whose explanatory
variable values are in the matrix X*.

» What is the marginal distribution of the corresponding future
response values y*?

» This is the posterior predictive distribution
T(y*y, X*, X).

» We will use this later as a tool for checking the fit of our
regression model.



The Posterior Predictive Distribution of the Data

» In our analysis with the noninformative priors, note that

» Then integrating out 3 and &2, it can be shown that the
posterior predictive distribution of y* is multivariate-t with
(n — k) degrees of freedom so that

E(y*) = X*b and
(n— k)62

4+ X*(X'X)"1x*
n_k_2[+ (X'X) ]

covariance matrix =
» Intuition: Our original data are multivariate normal, given the
model.
» Our future predictions are multivariate-t (reflects added
uncertainty about the model).



CHAPTER 5 SLIDES START HERE



The Bayesian Prior

» A prior distribution must be specified in a Bayesian analysis.

» The choice of prior can substantially affect posterior
conclusions, especially when the sample size is not large.

» We now examine several broad methods of determining prior
distributions.



Conjugate Priors

» We know that conjugacy is a property of a prior along with
a likelihood that implies the posterior distribution will have
the same distributional form as the prior (just with different
parameter(s)).

» We have seen some examples of conjugate priors:
Data/Likelihood Prior
1. Bernoulli — Beta for p
2. Poisson — Gamma for A
3. Normal — Normal for
4. Normal — Inverse gamma for ¢



Conjugate Priors

Other examples:

No o e

Multinomial — Dirichlet for p1, po, ..., pk
Negative Binomial — Beta for p
Uniform(0, #) — Pareto for upper limit
Exponential — Gamma for (3

Gamma (3 unknown) — Gamma for 3
Pareto (v unknown) — Gamma for «

Pareto (3 unknown) — Pareto for (3



Conjugate Priors: Exponential Family

» Consider the family of distributions known as the
one-parameter exponential family.

» This family consists of any distribution whose p.d.f. (or
p.m.f.) can be written as:

f(x|0) = el r(x)5(p)

where t(x) and r(x) do not depend on the parameter 6 and
u(#) and s(#) do not depend on x.

» Note that any such density can be written as

f(x|0) = eltCu@ ()1 +in[s(O)]}



Conjugate Priors: Exponential Family

» |If we observe an iid sample Xi, ..., X,, the joint density of the
data is thus

u(8) > t(x; +Z|nrx, +nlin[s(0)]}
f(x|9):e{()'—() [r(xi)]+nIn[s(0)]

» Consider a prior for § (with the prior parameters k and 7)
having the form:

p(e) _ C( ’,y)e{ku 0)v+kIn[s(0)]}



Conjugate Priors: Exponential Family

Then the posterior is

m(0]x) o< £(x|0)p(6)

x exp{u(@) Z t(x;) + nin[s()] + ku(8)y + k In[s(H)]}

= exp{u(&) [Z t(x;) + kv

+ (n+ k) In[s(0)]}

t(x;) + k
- exp{(n + k)u(6) F(X)’Y +(n+ k) In[s(H)]}
n+k
which is of the same form as the prior, except with “k"= n+ k
w2 t(xi) + ky
d ==
and n+ k

= If our data are iid from a one-parameter exponential family,
then a conjugate prior will exist.



Conjugate Priors

» Conjugate priors are mathematically convenient.
» Sometimes they are quite flexible, depending on the specific
hyperparameters we use.

» But they reflect very specific prior knowledge, so we should be
wary of using them unless we truly possess that prior
knowledge.



Uninformative Priors

v

These priors intentionally provide very little specific
information about the parameter(s).

v

A classic uninformative prior is the uniform prior.

v

A proper uniform prior integrates to a finite quantity.

v

Example 1: For Bernoulli(#) data, a uniform prior on 6 is

p(6) =1, 0<6<1.

v

This makes sense when 6 has bounded support.



Uninformative Priors

» Example 2: Consider N(0,02) data. If it is “reasonable” to
assume, that, say o2 < 100, we could use the uniform prior

1
= _—_ 0<o2<
p(c°) 100" 0<o0°<100

(even though &2 is not intrinsically bounded).
» An improper uniform prior integrates to oo:
» Example 3: N(u,1) data with

p(p) =1, —0o < p < oo.

» This is fine as long as the resulting posterior is proper.

» But be careful: Sometimes an improper prior will yield an
improper posterior.



Invariance Property

» A problem with the uniform prior is that its “lack of
information” is not invariant under transformation.

0
» Example 1 again: Consider the odds of success 7= ——

1-0
» Then if p(f) = 1, with the Jacobian

/= ’Cﬁ/‘(lj—T)‘ - (1—!—17)2’

then p(7) = 0<7<o00:

1
(1+7)2%’



Invariance Property

» Picture:

A Prior on the Odds of Success
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» This same prior is now an “informative” prior for the odds.
» (However, note that P(0 < 7 < 1) = P(t > 1) =0.5.)



Jeffreys Prior

> Jeffreys (1961) developed a class of priors that were invariant
under transformation.

» For a single parameter 6 and data having joint density 7(x|6),
the Jeffreys prior

2

ps(0) [—E<dd? In f(x|0))]1/2 = [1(0)]*/?

(square root of Fisher information)

» For a parameter vector 6:

’

ps(8) x [E{ [% In f(x|0)} [% In f(x|0)} }] v



Jeffreys Prior

» Example 1 yet again: For Xy, Xo,..., X, g Bernoulli(6),

f(x|0) = (;) eY(1—6)"Y, 0<O<1,

where y = > x;.
i=1
n
= Inf(x|0) = () yIn(8) +(n—y)In(1—6)
y
d y _n-—y
30 Inf(x|0) = 7 5
2
Yy  n-y
@ln f(x|9) = 92 ( 0)2



Jeffreys Prior

d? né n— nf n n
—E I _ 7 __
= —E| gz Inf(xi0)] = @t a—e2 9 1-0¢
_n(l—0)+n0  n

0(1—-0)  6(1—90)

= py(0) [9(17”_9)] v

= py(0) x 67121 — 9)7Y2 = 2711 — )1



Jeffreys Prior

= Jeffreys prior for 6 is a Beta(1/2,1/2):
Picture:

Jeffreys Prior for a Success Probability
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Jeffreys Prior

» Invariance: If p,(0) is the Jeffreys prior for 6, for any
transformation ¢ = g(6),

ps(0) = PJ((b)‘:% -



