
Example of Bayesian Model Selection

I Example in R with Oxygen Data Set

I We can consider all possible subsets of set of predictor
variables:

I We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms
appear):



The Posterior Predictive Distribution of the Data

I Suppose we have built our Bayesian regression model using
response data y and explanatory data matrix X.

I Suppose we consider future observations whose explanatory
variable values are in the matrix X∗.

I What is the marginal distribution of the corresponding future
response values y∗?

I This is the posterior predictive distribution

π(y∗|y,X∗,X).

I We will use this later as a tool for checking the fit of our
regression model.



The Posterior Predictive Distribution of the Data

I In our analysis with the noninformative priors, note that

π(y∗,β, σ2|y,X∗,X) = π(y∗|β, σ2,X∗)π(β, σ2|X, y)

I Then integrating out β and σ2, it can be shown that the
posterior predictive distribution of y∗ is multivariate-t with
(n − k) degrees of freedom so that

E (y∗) = X∗b̂ and

covariance matrix =
(n − k)σ̂2

n − k − 2
[I + X∗(X

′
X)−1X∗′

]

I Intuition: Our original data are multivariate normal, given the
model.

I Our future predictions are multivariate-t (reflects added
uncertainty about the model).



CHAPTER 5 SLIDES START HERE



The Bayesian Prior

I A prior distribution must be specified in a Bayesian analysis.

I The choice of prior can substantially affect posterior
conclusions, especially when the sample size is not large.

I We now examine several broad methods of determining prior
distributions.



Conjugate Priors

I We know that conjugacy is a property of a prior along with
a likelihood that implies the posterior distribution will have
the same distributional form as the prior (just with different
parameter(s)).

I We have seen some examples of conjugate priors:
Data/Likelihood Prior

1. Bernoulli → Beta for p
2. Poisson → Gamma for λ
3. Normal → Normal for µ
4. Normal → Inverse gamma for σ2



Conjugate Priors

Other examples:

1. Multinomial → Dirichlet for p1, p2, . . . , pk

2. Negative Binomial → Beta for p

3. Uniform(0, θ) → Pareto for upper limit

4. Exponential → Gamma for β

5. Gamma (β unknown) → Gamma for β

6. Pareto (α unknown) → Gamma for α

7. Pareto (β unknown) → Pareto for β



Conjugate Priors: Exponential Family

I Consider the family of distributions known as the
one-parameter exponential family.

I This family consists of any distribution whose p.d.f. (or
p.m.f.) can be written as:

f (x |θ) = e [t(x)u(θ)]r(x)s(θ)

where t(x) and r(x) do not depend on the parameter θ and
u(θ) and s(θ) do not depend on x .

I Note that any such density can be written as

f (x |θ) = e{t(x)u(θ)+ln[r(x)]+ln[s(θ)]}



Conjugate Priors: Exponential Family

I If we observe an iid sample X1, . . . ,Xn, the joint density of the
data is thus

f (x|θ) = e
{u(θ)

nP
i=1

t(xi )+
nP

i=1
ln[r(xi )]+n ln[s(θ)]}

I Consider a prior for θ (with the prior parameters k and γ)
having the form:

p(θ) = c(k, γ)e{ku(θ)γ+k ln[s(θ)]}



Conjugate Priors: Exponential Family

Then the posterior is

π(θ|x) ∝ f (x|θ)p(θ)

∝ exp

{
u(θ)

∑
t(xi ) + n ln[s(θ)] + ku(θ)γ + k ln[s(θ)]

}

= exp

{
u(θ)

[∑
t(xi ) + kγ

]
+ (n + k) ln[s(θ)]

}

= exp

{
(n + k)u(θ)

[∑
t(xi ) + kγ

n + k

]
+ (n + k) ln[s(θ)]

}

which is of the same form as the prior, except with “k”= n + k

and “γ”=

∑
t(xi ) + kγ

n + k
.

⇒ If our data are iid from a one-parameter exponential family,
then a conjugate prior will exist.



Conjugate Priors

I Conjugate priors are mathematically convenient.

I Sometimes they are quite flexible, depending on the specific
hyperparameters we use.

I But they reflect very specific prior knowledge, so we should be
wary of using them unless we truly possess that prior
knowledge.



Uninformative Priors

I These priors intentionally provide very little specific
information about the parameter(s).

I A classic uninformative prior is the uniform prior.

I A proper uniform prior integrates to a finite quantity.

I Example 1: For Bernoulli(θ) data, a uniform prior on θ is

p(θ) = 1, 0 ≤ θ ≤ 1.

I This makes sense when θ has bounded support.



Uninformative Priors

I Example 2: Consider N(0, σ2) data. If it is “reasonable” to
assume, that, say σ2 < 100, we could use the uniform prior

p(σ2) =
1

100
, 0 ≤ σ2 ≤ 100

(even though σ2 is not intrinsically bounded).

I An improper uniform prior integrates to ∞:

I Example 3: N(µ, 1) data with

p(µ) = 1, −∞ < µ <∞.

I This is fine as long as the resulting posterior is proper.

I But be careful: Sometimes an improper prior will yield an
improper posterior.



Invariance Property

I A problem with the uniform prior is that its “lack of
information” is not invariant under transformation.

I Example 1 again: Consider the odds of success τ =
θ

1− θ
.

I Then if p(θ) = 1, with the Jacobian

J =
∣∣∣ d

dτ

( τ

1 + τ

)∣∣∣ =
1

(1 + τ)2
,

then p(τ) =
1

(1 + τ)2
, 0 < τ <∞ :



Invariance Property

I Picture:
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I This same prior is now an “informative” prior for the odds.

I (However, note that P(0 < τ < 1) = P(τ > 1) = 0.5.)



Jeffreys Prior

I Jeffreys (1961) developed a class of priors that were invariant
under transformation.

I For a single parameter θ and data having joint density f (x|θ),
the Jeffreys prior

pJ(θ) ∝
[
−E

( d2

dθ2
ln f (x|θ)

)]1/2
= [I (θ)]1/2

(square root of Fisher information)

I For a parameter vector θ:

pJ(θ) ∝
[
E

{[ ∂

∂θ
ln f (x|θ)

]′[ ∂

∂θ
ln f (x|θ)

]}]1/2



Jeffreys Prior

I Example 1 yet again: For X1,X2, . . . ,Xn
iid∼ Bernoulli(θ),

f (x|θ) =

(
n

y

)
θy (1− θ)n−y , 0 ≤ θ ≤ 1,

where y =
n∑

i=1
xi .

⇒ ln f (x|θ) = ln

(
n

y

)
+ y ln(θ) + (n − y) ln(1− θ)

d

dθ
ln f (x|θ) =

y

θ
− n − y

1− θ

d2

dθ2
ln f (x|θ) = − y

θ2
− n − y

(1− θ)2



Jeffreys Prior

⇒ −E
[ d2

dθ2
ln f (x|θ)

]
=

nθ

θ2
+

n − nθ

(1− θ)2
=

n

θ
+

n

1− θ

=
n(1− θ) + nθ

θ(1− θ)
=

n

θ(1− θ)

⇒ pJ(θ) ∝
[ n

θ(1− θ)

]1/2

⇒ pJ(θ) ∝ θ−1/2(1− θ)−1/2 = θ
1/2−1(1− θ)

1/2−1



Jeffreys Prior

⇒ Jeffreys prior for θ is a Beta(1/2, 1/2):
Picture:
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Jeffreys Prior

I Invariance: If pJ(θ) is the Jeffreys prior for θ, for any
transformation φ = g(θ),

pJ(θ) = pJ(φ)
∣∣∣dφ

dθ

∣∣∣.


