
Local Sensitivity Analysis

I Unfortunately, it may be too difficult to examine a large class
of prior specifications, especially when the target parameter θ
is multidimensional.

I Local sensitivity analysis simply focuses on how changes in
the hyperparameter value(s) affect the posterior.

I Example 1(a): X1, . . . ,Xn
iid∼ N(µ, σ2), σ2 known.

I Conjugate prior for µ: µ ∼ N(δ, τ2)
I Compare resulting posterior (the plot and/or quantiles) to the

posterior from these priors:

µ ∼ N(δ − τ, τ2)

µ ∼ N(δ + τ, τ2)

µ ∼ N(δ, 0.5τ2)

µ ∼ N(δ, 2τ2)

See R example.



Local Sensitivity Analysis

I Example 1(b): X1, . . . ,X200 are annual deaths from horse
kicks for 10 Prussian cavalry corps for each of 20 years.

I Let Xi
iid∼ Poisson(λ), and let λ ∼ Gamma(α, β) be the prior.

I Compare posteriors from these priors for λ:

λ ∼ Gamma(2, 4)

λ ∼ Gamma(4, 8)

λ ∼ Gamma(1, 2)

λ ∼ Gamma(0.1× 2,
√

0.1× 4)

λ ∼ Gamma(3× 2,
√

3× 4)

See R example with Prussian horse kick data.
General recommendation when the posterior is highly
sensitive to changes in prior specification:Choose a more
“objective” prior (or be prepared to defend your prior knowledge!).



Posterior Predictive Distribution

I Recall that for a fixed value of θ, our data X follow the
distribution p(X|θ).

I However, the true value of θ is uncertain, so we should
average over the possible values of θ to get a better idea of
the distribution of X.

I Before taking the sample, the uncertainty in θ is represented
by the prior distribution p(θ). So for some new data value
xnew , averaging over p(θ) gives the prior predictive
distribution:

p(xnew ) =

∫
Θ

p(xnew , θ) dθ =

∫
Θ

p(xnew |θ)p(θ) dθ



Posterior Predictive Distribution

I After taking the sample, we have a better representation of
the uncertainty in θ via our posterior p(θ|x). So the posterior
predictive distribution for a new data point xnew is:

p(xnew |x) =

∫
Θ

p(xnew |θ, x)p(θ|x) dθ

=

∫
Θ

p(xnew |θ)p(θ|x) dθ

(since xnew is independent of the sample data x)

I This reflects how we would predict new data to behave / vary.

I If the data we did observe follow this pattern closely, it
indicates we have chosen our model and prior well.



Posterior Predictive Distribution

Example 2 again: X1, . . . ,Xn
iid∼ Poisson(λ),

λ ∼ Gamma(α, β)

λ|x = Gamma(
∑

xi + α, n + β)

Posterior predictive distribution is:

p(xnew |x) =

∞∫
0

p(xnew |λ)p(λ|x) dλ

=

∞∫
0

[
λxnew e−λ

(xnew )!

][
(n + β)

P
xi+α

Γ(
∑

xi + α)
λ

P
xi+α−1e−(n+β)λ

]
dλ



Posterior Predictive Distribution

So

p(xnew |x) =
(n + β)

P
xi+α

Γ(
∑

xi + α)Γ(xnew + 1)

∞∫
0

λxnew+
P

xi+α−1e−(n+β+1)λ dλ

=
(n + β)

P
xi+α

Γ(
∑

xi + α)Γ(xnew + 1)

Γ(xnew +
∑

xi + α)

(n + β + 1)xnew+
P

xi+α

=
Γ(xnew +

∑
xi + α)

Γ(
∑

xi + α)Γ(xnew + 1)

( n + β

n + β + 1

)P
xi+α( 1

n + β + 1

)xnew

which is a negative binomial with mean
P

xi+α
n+β and varianceP

xi+α
(n+β)2

(n + β + 1).



Posterior Predictive Distribution

I ⇒ The posterior predictive distribution has the same mean as
the posterior distribution, but a greater variance (additional
“sampling uncertainty” since we are drawing a new data
value).

I See R example (Prussian army data).



More about Posterior Predictive Distribution

I Example 1(a) again: X1, . . . ,Xn
iid∼ N(µ, σ2), σ2 known.

I Posterior for µ|x is normal with mean

µpost =
δ/τ2 + nx̄/σ2

1/τ2 + n/σ2

and variance

σ2
post =

τ2σ2

σ2 + nτ2
.

I Note xnew |µ ∼ N(µ, σ2), so the posterior predictive
distribution is:

p(xnew |x) =

∞∫
−∞

p(xnew |µ)p(µ|x) dµ.



More about Posterior Predictive Distribution

I Sometimes the form of p(xnew |x) can be derived directly, but
it is often easier to sample from p(xnew |x) using Monte Carlo
methods:

I For j = 1, . . . , J, sample

1. µ[ j ] from p(µ|x) and
2. x∗[ j ] from p(xnew |µ[ j ])

I Then x∗[1], . . . , x∗[J] are an iid sample from p(xnew |x).
I See R example with lead data.


