Local Sensitivity Analysis

- Unfortunately, it may be too difficult to examine a large class of prior specifications, especially when the target parameter θ is multidimensional.
- Local sensitivity analysis simply focuses on how changes in the hyperparameter value(s) affect the posterior.
- Example 1(a): $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, σ^2 known.
- Conjugate prior for μ : $\mu \sim N(\delta, \tau^2)$
- Compare resulting posterior (the plot and/or quantiles) to the posterior from these priors:

$$\begin{split} \mu &\sim \textit{N}(\delta - \tau, \tau^2) \\ \mu &\sim \textit{N}(\delta + \tau, \tau^2) \\ \mu &\sim \textit{N}(\delta, 0.5\tau^2) \\ \mu &\sim \textit{N}(\delta, 2\tau^2) \end{split}$$

See R example.

Local Sensitivity Analysis

- Example 1(b): X₁,..., X₂₀₀ are annual deaths from horse kicks for 10 Prussian cavalry corps for each of 20 years.
- Let $X_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$, and let $\lambda \sim \text{Gamma}(\alpha, \beta)$ be the prior.
- Compare posteriors from these priors for λ:

 $egin{aligned} \lambda &\sim \mathsf{Gamma}(2,4) \ \lambda &\sim \mathsf{Gamma}(4,8) \ \lambda &\sim \mathsf{Gamma}(1,2) \ \lambda &\sim \mathsf{Gamma}(0.1 imes 2, \sqrt{0.1} imes 4) \ \lambda &\sim \mathsf{Gamma}(3 imes 2, \sqrt{3} imes 4) \end{aligned}$

See R example with Prussian horse kick data.

General recommendation when the posterior is highly sensitive to changes in prior specification: Choose a more "objective" prior (or be prepared to defend your prior knowledge!).

- Recall that for a fixed value of θ, our data X follow the distribution p(X|θ).
- However, the true value of θ is uncertain, so we should average over the possible values of θ to get a better idea of the distribution of X.
- Before taking the sample, the uncertainty in θ is represented by the prior distribution p(θ). So for some new data value x_{new}, averaging over p(θ) gives the prior predictive distribution:

$$p(x_{new}) = \int_{\Theta} p(x_{new}, \theta) \, \mathrm{d}\theta = \int_{\Theta} p(x_{new}|\theta) p(\theta) \, \mathrm{d}\theta$$

Posterior Predictive Distribution

After taking the sample, we have a better representation of the uncertainty in θ via our posterior p(θ|x). So the posterior predictive distribution for a new data point x_{new} is:

$$p(x_{new}|\mathbf{x}) = \int_{\Theta} p(x_{new}|\theta, \mathbf{x}) p(\theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} p(x_{new}|\theta) p(\theta|\mathbf{x}) d\theta$$
(since x_{new} is independent of the sample data \mathbf{x})

- This reflects how we would predict new data to behave / vary.
- If the data we did observe follow this pattern closely, it indicates we have chosen our model and prior well.

Example 2 again:
$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$$
,
 $\lambda \sim \text{Gamma}(\alpha, \beta)$
 $\lambda | \mathbf{x} = \text{Gamma}(\sum x_i + \alpha, n + \beta)$

Posterior predictive distribution is:

$$p(x_{new}|\mathbf{x}) = \int_{0}^{\infty} p(x_{new}|\lambda) p(\lambda|\mathbf{x}) d\lambda$$
$$= \int_{0}^{\infty} \left[\frac{\lambda^{x_{new}} e^{-\lambda}}{(x_{new})!} \right] \left[\frac{(n+\beta)^{\sum x_i+\alpha}}{\Gamma(\sum x_i+\alpha)} \lambda^{\sum x_i+\alpha-1} e^{-(n+\beta)\lambda} \right] d\lambda$$

Posterior Predictive Distribution

So

$$p(x_{new}|\mathbf{x}) = \frac{(n+\beta)^{\sum x_i+\alpha}}{\Gamma(\sum x_i+\alpha)\Gamma(x_{new}+1)} \int_0^\infty \lambda^{x_{new}+\sum x_i+\alpha-1} e^{-(n+\beta+1)\lambda} d\lambda$$
$$= \frac{(n+\beta)^{\sum x_i+\alpha}}{\Gamma(\sum x_i+\alpha)\Gamma(x_{new}+1)} \frac{\Gamma(x_{new}+\sum x_i+\alpha)}{(n+\beta+1)^{x_{new}+\sum x_i+\alpha}}$$
$$= \frac{\Gamma(x_{new}+\sum x_i+\alpha)}{\Gamma(\sum x_i+\alpha)\Gamma(x_{new}+1)} \left(\frac{n+\beta}{n+\beta+1}\right)^{\sum x_i+\alpha} \left(\frac{1}{n+\beta+1}\right)^{x_{new}}$$

which is a negative binomial with mean $\frac{\sum x_i + \alpha}{n + \beta}$ and variance $\frac{\sum x_i + \alpha}{(n + \beta)^2} (n + \beta + 1)$.

- ➤ ⇒ The posterior predictive distribution has the same mean as the posterior distribution, but a greater variance (additional "sampling uncertainty" since we are drawing a new data value).
- See R example (Prussian army data).

More about Posterior Predictive Distribution

Example 1(a) again: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, σ^2 known.

• Posterior for $\mu | \mathbf{x}$ is normal with mean

$$\mu_{\rm post} = \frac{\delta/\tau^2 + n\bar{x}/\sigma^2}{1/\tau^2 + n/\sigma^2}$$

and variance

$$\sigma_{\rm post}^2 = \frac{\tau^2 \sigma^2}{\sigma^2 + n\tau^2}.$$

Note x_{new} |μ ~ N(μ, σ²), so the posterior predictive distribution is:

$$p(x_{new}|\mathbf{x}) = \int\limits_{-\infty}^{\infty} p(x_{new}|\mu) p(\mu|\mathbf{x}) \,\mathrm{d}\mu.$$

- Sometimes the form of p(x_{new}|x) can be derived directly, but it is often easier to sample from p(x_{new}|x) using Monte Carlo methods:
- For j = 1,..., J, sample

 µ^[j] from p(µ|x) and
 x^{*[j]} from p(x_{new}|µ^[j])
- ▶ Then $x^{*[1]}, \ldots, x^{*[J]}$ are an iid sample from $p(x_{new}|\mathbf{x})$.
- See R example with lead data.