Local Sensitivity Analysis
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Unfortunately, it may be too difficult to examine a large class
of prior specifications, especially when the target parameter 6
is multidimensional.

Local sensitivity analysis simply focuses on how changes in
the hyperparameter value(s) affect the posterior.

Example 1(a): Xi,..., X, i N(u,0?), 0 known.

Conjugate prior for p: pu ~ N(6,72)

Compare resulting posterior (the plot and/or quantiles) to the
posterior from these priors:

N(§ —7,7?)
(5+7‘ 7°)
N(6,0.57%)
N(6,272)

See R example.



Local Sensitivity Analysis

» Example 1(b): Xi,..., Xo00 are annual deaths from horse
kicks for 10 Prussian cavalry corps for each of 20 years.

> Let X; 1S Poisson(\), and let A ~ Gamma(«, [3) be the prior.
» Compare posteriors from these priors for A:

A ~ Gamma(2,4)
A ~ Gamma(4,8)
A ~ Gamma(1,2)
A ~ Gamma(0.1 x 2,v/0.1 x 4)

A ~ Gamma(3 x 2,V/3 x 4)

See R example with Prussian horse kick data.

General recommendation when the posterior is highly
sensitive to changes in prior specification:Choose a more
“objective” prior (or be prepared to defend your prior knowledge!).



Posterior Predictive Distribution

» Recall that for a fixed value of 6, our data X follow the
distribution p(X|6).

» However, the true value of € is uncertain, so we should
average over the possible values of 6 to get a better idea of
the distribution of X.

» Before taking the sample, the uncertainty in 6 is represented
by the prior distribution p(#). So for some new data value
Xnew, averaging over p(6) gives the prior predictive
distribution:

p(Xnew) = /p(XneWa 9) d = /p(Xnewle)p(e) do
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Posterior Predictive Distribution

» After taking the sample, we have a better representation of
the uncertainty in 6 via our posterior p(f|x). So the posterior
predictive distribution for a new data point x,e, is:

P(new|x) = / P(Xnew |0, %) p(6]) 6
(€]
:/p(x,,ew\ﬁ)p(0|x) dé

)
(since Xpew is independent of the sample data x)

» This reflects how we would predict new data to behave / vary.

» If the data we did observe follow this pattern closely, it
indicates we have chosen our model and prior well.



Posterior Predictive Distribution

Example 2 again: Xi,..., X, g Poisson(A),

A ~ Gamma(a, )
Ax = Gamma(d x; + o, n + [3)

Posterior predictive distribution is:

P(Xnew|x) = | p(Xnew|A)p(A[X) dA

0\8 0\8

Nnew = (n + ﬂ)ZXH—a )\Ex;Jrafle*(nJrﬁ))\ d\
(Xnew)! FrO-xi+a)



Posterior Predictive Distribution

So
_ (n )ZXi+a 70 Xnew+ZXi+a71 7(n+/8+1)A
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which is a negative binomial with mean 2ita
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R and variance
(n+8)? z(n+ 0 +1).




Posterior Predictive Distribution

» = The posterior predictive distribution has the same mean as
the posterior distribution, but a greater variance (additional
“sampling uncertainty” since we are drawing a new data

value).

» See R example (Prussian army data).



More about Posterior Predictive Distribution

» Example 1(a) again: Xi,..., X, e N(u,0?), o known.

» Posterior for u|x is normal with mean

B 5/7’2 + n>_</<72
Hpost = 1/72 4 n/o?
and variance

) 7_20_2

ag = — 5.
post — 2 2

» Note Xpew |t ~ N(,0?), so the posterior predictive
distribution is:

o)

P(Xnew|x) = / P (e 1) P(111%) .

—0o0



More about Posterior Predictive Distribution

» Sometimes the form of p(xpew|X) can be derived directly, but
it is often easier to sample from p(xuew|X) using Monte Carlo
methods:

» Forj=1,...,J, sample

1. pub1 from p(u/x) and
2. x*Ul from p(xpew|u?)
» Then x*1 ... x*M] are an iid sample from p(xpew|X).

» See R example with lead data.



