
Two-Sided Tests

I Two-sided tests about θ have the form:

H0 : θ = c vs. Ha : θ 6= c

for some constant c .

I We cannot test this using a continuous prior on θ, because
that would result in a prior probability P[θ ∈ Θ0] =0 and thus
a posterior probability P[θ ∈ Θ0|x] =0 for any data set x.

I We could place a prior probability mass on the point θ = c ,
but many Bayesians are uncomfortable with this since the
value of this point mass is impossible to judge and is likely to
greatly affect the posterior.



Two-Sided Tests

I One solution: Pick a small value ε > 0 such that if θ is within
ε of c , it is considered “practically indistinguishable” from c .

I Then let Θ0 = [c − ε, c + ε] and find the posterior probability
that θ ∈ Θ0.

I Example 1 again: Testing H0 : θ = 0.10 vs. Ha : θ 6= 0.10.
Letting ε = 0.003, then Θ0 = [0.097, 0.103] and

P[θ ∈ Θ0|y] =

.103∫
.097

π(θ|y) dθ = .033

from R.

I Another solution (mimicking classical approach): Derive a
100(1− α)% (two-sided) HPD credible interval for θ. Reject
H0 : θ = c “at level α” if and only if c falls outside this
credible interval.



Two-Sided Tests

I Note: Bayesian decision theory attempts to specify the cost
of a wrong decision to conclude H0 or Ha through a loss
function.

I We might evaluate the Bayes risk of some decision rule, i.e.,
its expected loss with respect to the posterior distribution of
θ.



The Bayes Factor

I The Bayes Factor provides a way to formally compare two
competing models, say M1 and M2.

I It is similar to testing a “full model” vs. “reduced model”
(with, e.g., a likelihood ratio test) in classical statistics.

I However, with the Bayes Factor, one model does not have
to be nested within the other.

I Given a data set x, we compare models

M1 : f1(x|θ1) and M2 : f2(x|θ2)

I We may specify prior distributions p1(θ1) and p2(θ2) that
lead to prior probabilities for each model p(M1) and p(M2).



The Bayes Factor

By Bayes’ Law, the posterior odds in favor of Model 1 versus
Model 2 is:

π(M1|x)
π(M2|x)

=

∫
Θ1

p(M1)f1(x|θ1)p1(θ1) dθ1

p(x)∫
Θ2

p(M2)f2(x|θ2)p2(θ2) dθ2

p(x)

=
p(M1)

p(M2)
·
∫
Θ1

f1(x|θ1)p1(θ1) dθ1∫
Θ2

f2(x|θ2)p2(θ2) dθ2

= [prior odds]× [Bayes Factor B(x)]



The Bayes Factor

Rearranging, the Bayes Factor is:

B(x) =
π(M1|x)
π(M2|x)

× p(M2)

p(M1)

=
π(M1|x)/π(M2|x)

p(M1)/p(M2)

(the ratio of the posterior odds for M1 to the prior odds for M1).



The Bayes Factor

I Note: If the prior model probabilities are equal, i.e.,
p(M1) = p(M2), then the Bayes Factor equals the posterior
odds for M1.

I Note: If p(M1) = p(M2) and the parameter spaces Θ1 and
Θ2 are the same, then the Bayes Factor reduces to a
likelihood ratio.
Note that:

B(x) =
π(M1|x)
π(M2|x)

× p(M2)

p(M1)
=

π(M1,x)
p(x)p(M1)

π(M2,x)
p(x)p(M2)

=

π(M1,x)
p(M1)

π(M2,x)
p(M2)

=
π(x|M1)

π(x|M2)



The Bayes Factor

I Clearly a Bayes Factor much greater than 1 supports Model 1
over Model 2.

I Jeffreys proposed the following rules, if Model 1 represents a
null model:

Result Conclusion

B(x) ≥ 1 → Model 1 supported

0.316 ≤ B(x) < 1 → Minimal evidence against Model 1

(Note 0.316 = 10−1/2)

0.1 ≤ B(x) < 0.316 → Substantial evidence against Model 1

0.01 ≤ B(x) < 0.1 → Strong evidence against Model 1

B(x) < 0.01 → Decisive evidence against Model 1

I Clearly these labels are fairly arbitrary.



The Bayes Factor

I In the case when there are only two possible models, M1

and M2, then given the Bayes Factor B(x), we can calculate
the posterior probability of Model 1 as:

P(M1|x) = 1− P(M2|x) = 1− P(x|M2)P(M2)

P(x)

= 1− P(x|M1)

B(x)

P(M2)

P(x)

⇒ P(M1|x) = 1−
{

1

B(x)

P(M2)

P(M1)

}
P(M1|x)

⇒ 1 =

[
1 +

{
1

B(x)

P(M2)

P(M1)

}]
P(M1|x)

⇒ P(M1|x) =
1

1 +

{
1

B(x)
P(M2)
P(M1)

}



Example: Comparing Two Means

Example 2(a): Comparing Two Means (Bayes Factor Approach)

I Data: Blood pressure reduction was measured for 11 patients
who took calcium supplements and for 10 patients who took a
placebo.

I We model the data with normal distributions having common
variance:

Calcium data : X1j
iid∼ N(µ1, σ

2), j = 1, . . . , 11

Placebo data : X2j
iid∼ N(µ2, σ

2), j = 1, . . . , 10

Consider the two-sided test for whether the mean BP reduction
differs for the two groups:

H0 : µ1 = µ2 vs. Ha : µ1 6= µ2



Example: Comparing Two Means

I We will place a prior on the difference of standardized means

∆ =
µ1 − µ2

σ

with specified prior mean µ∆ and variance σ2
∆.

I Consider the classical two-sample t-statistic

T =
X̄1 − X̄2√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 /

√
n∗

,

where n∗ =
(

1
n1

+ 1
n2

)−1
.



Example: Comparing Two Means

I H0 and Ha define two specific models for the distribution of T .

I Under H0, T ∼ (central) t with (n1 + n2 − 2) degrees of
freedom.

I Under Ha, T ∼ noncentral t.

I With this prior, the Bayes Factor for H0 over Ha is:

B(x) =
tn1+n2−2(t

∗, 0, 1)

tn1+n2−2(t∗, µ∆

√
n∗, 1 + n∗σ2

∆)

where t∗ is the observed t-statistic.

I See R example to get B(x) and P[H0|x].



Example: Comparing Two Means

Example 2(a): Comparing Two Means (Gibbs Sampling
Approach)

I Same data set, but suppose our interest is in testing whether
the calcium yields a better BP reduction than the placebo:

H0 : µ1 ≤ µ2 vs. Ha : µ1 > µ2

I We set up the sampling model:

X1j = µ + τ + ε1j , j = 1, . . . , 11

X2j = µ− τ + ε2j , j = 1, . . . , 10

where εij
iid∼ N(0, σ2).

I Thus µ1 = µ + τ and µ2 = µ− τ .



Example: Comparing Two Means

We can assume independent priors for µ, τ , and σ2:

µ ∼ N(µµ, σ2
µ)

τ ∼ N(µτ , σ
2
τ )

σ2 ∼ IG (ν1/2, ν1ν2/2)

Then it can be shown that the full conditional distributions are:

µ|x1, x2, τ, σ
2 ∼ Normal

τ |x1, x2, µ, σ2 ∼ Normal

σ2|x1, x2, µ, τ ∼ IG

where the appropriate parameters are given in the R code.



Example: Comparing Two Means

I R example: Gibbs Sampler can obtain approximate posterior
distributions for µ and (especially of interest) for τ .

I Note P[µ1 > µ2|x] = P[τ > 0|x].
I We can also find the posterior predictive probability

P[X1 > X2].


