Two-Sided Tests

» Two-sided tests about 6 have the form:
Hy:0=cvs. Hy:0+#c

for some constant c.

» We cannot test this using a continuous prior on 6, because
that would result in a prior probability P[# € ©¢] =0 and thus
a posterior probability P[§ € ©g|x] =0 for any data set x.

» We could place a prior probability mass on the point § = c,
but many Bayesians are uncomfortable with this since the
value of this point mass is impossible to judge and is likely to
greatly affect the posterior.



Two-Sided Tests

» One solution: Pick a small value € > 0 such that if 8 is within
€ of ¢, it is considered “practically indistinguishable” from c.

» Then let ©9 = [c — €, ¢ + €] and find the posterior probability
that 6 € ©g.

» Example 1 again: Testing Hp: 0 = 0.10 vs. H, : 6 # 0.10.
Letting e = 0.003, then ©¢ = [0.097,0.103] and
103
P[0 € ©¢ly] = / m(Aly) dd = .033
.097

from R.

» Another solution (mimicking classical approach): Derive a
100(1 — )% (two-sided) HPD credible interval for 6. Reject
Hp : 6 = ¢ “at level «" if and only if ¢ falls outside this
credible interval.



Two-Sided Tests

» Note: Bayesian decision theory attempts to specify the cost
of a wrong decision to conclude Hy or H, through a loss
function.

» We might evaluate the Bayes risk of some decision rule, i.e.,
its expected loss with respect to the posterior distribution of
6.



The Bayes Factor

» The Bayes Factor provides a way to formally compare two
competing models, say M; and M.

» |t is similar to testing a “full model” vs. “reduced model”
(with, e.g., a likelihood ratio test) in classical statistics.

» However, with the Bayes Factor, one model does not have
to be nested within the other.

» Given a data set x, we compare models

Ml . fl(X|91) and M2 . fg(x]02)

» We may specify prior distributions p1(01) and px(62) that
lead to prior probabilities for each model p(M;) and p(M>).



The Bayes Factor

By Bayes’ Law, the posterior odds in favor of Model 1 versus

Model 2 is:
I p(My)fi(x|601)p1(61) dOy
m(Milx) _ 7€ p(x)
ﬂ(MQ’X) f M2 fz(x‘az)pg(Qz)daz
©: p(x)

p(Mi) Jo, fi(x|61)p1(61) d61
p(M2)  [o, H(x|02)p2(62) d6>
= [prior odds] x [Bayes Factor B(x)]




The Bayes Factor

Rearranging, the Bayes Factor is:

m(Mifx)  p(M2)
W(M2|X) p(Mr)
_ m(Mi]x)/m(Ma|x)
p(M1)/p(Mz)

(the ratio of the posterior odds for M; to the prior odds for Mjy).

B(x) =




The Bayes Factor

» Note: If the prior model probabilities are equal, i.e.,

p(M1) = p(M>), then the Bayes Factor equals the posterior
odds for M.

» Note: If p(M;) = p(M>) and the parameter spaces ©; and
©, are the same, then the Bayes Factor reduces to a
likelihood ratio.

Note that:

w(My,X)
Bl = T p(M2) _ 5oy
m(Mz|x) — p(My) %

w(M1,X)
sy (x| M)

(M2, X) M
e (x| M2)




The Bayes Factor

» Clearly a Bayes Factor much greater than 1 supports Model 1
over Model 2.

» Jeffreys proposed the following rules, if Model 1 represents a
null model:

Result Conclusion

B(x) > 1 — Model 1 supported
0.316 < B(x) <1 — Minimal evidence against Model 1
(Note 0.316 = 107/2)
§ B(x) < 0.316 — Substantial evidence against Model 1

.01 < B(x) < 0.1 — Strong evidence against Model 1
B(x) < 0.01 — Decisive evidence against Model 1

» Clearly these labels are fairly arbitrary.



The Bayes Factor

» In the case when there are only two possible models, M;
and My, then given the Bayes Factor B(x), we can calculate
the posterior probability of Model 1 as:

P(Mifx) = 1 — P(Malx) — 1 — L XIM2)P(M2)

P(x)
_ 1 P(xIM) P(M2)
B(x) P(x)
= P(Mifx) =1 — {B(lx) ﬁ%ﬂ }P(I\/Il\x)
1= |1+ { B(lx) i%;} P(M|x)
= P(Myfx) = !




Example: Comparing Two Means

Example 2(a): Comparing Two Means (Bayes Factor Approach)
» Data: Blood pressure reduction was measured for 11 patients
who took calcium supplements and for 10 patients who took a
placebo.
» We model the data with normal distributions having common
variance:

Calcium data : Xy " N(p1,02), j=1,...,11
Placebo data : Xj; " N(p2,0°), j=1,...,10

Consider the two-sided test for whether the mean BP reduction
differs for the two groups:

Ho : p1 = po2 vs. Hy: puy # pi2



Example: Comparing Two Means

» We will place a prior on the difference of standardized means
A — H1— K2
o

with specified prior mean pa and variance azA.

» Consider the classical two-sample t-statistic
X1 — Xo

T =
(m— l)s1 (mp—1) s2 /**
\/ ni+ny—2 / n




Example: Comparing Two Means

Hp and H, define two specific models for the distribution of T.

Under Hy, T ~ (central) t with (n1 + ny — 2) degrees of
freedom.

v

v

v

Under H,, T ~ noncentral t.

v

With this prior, the Bayes Factor for Hy over H, is:

B(X) _ tn1+n2—2(t*7 07 1)
tn1+n2—2(t*a mav n*a 1+ n*0.2A)

where t* is the observed t-statistic.

> See R example to get B(x) and P[Hplx].



Example: Comparing Two Means

Example 2(a): Comparing Two Means (Gibbs Sampling
Approach)

» Same data set, but suppose our interest is in testing whether
the calcium yields a better BP reduction than the placebo:

Ho :pa < povs. Hy:pa > po

» We set up the sampling model:

Xyj=p+7+ey,j=1,...,11
ng:,U,—T—f-Ezj,j:l,...,lO

where €;; i N(0, o2).

» Thus py =p+7and up =p — 7.



Example: Comparing Two Means

We can assume independent priors for p, 7, and o2

o~ Ny, o7)
T~ N(,u,.r,aqz.)
02 ~ 1G(v1/2,111/2)

Then it can be shown that the full conditional distributions are:

(|x1, %2, 7, % ~ Normal
7|x1, X2, 1, 02 ~ Normal

o2|x1, X0, i1, T ~ 1G

where the appropriate parameters are given in the R code.



Example: Comparing Two Means

» R example: Gibbs Sampler can obtain approximate posterior
distributions for p and (especially of interest) for 7.

» Note P[u1 > pz|x] = P[r > 0|x].

» We can also find the posterior predictive probability
P[X1 > Xa].



