
CHAPTER 10 SLIDES START HERE



Hierarchical Models

I In hierarchical Bayesian estimation, we not only specify a
prior on the data model’s parameter(s), but specify a further
prior (called a hyperprior) for the hyperparameters.

I This more complicated prior structure can be useful for
modeling hierarchical data structures, also called multilevel
data.

I Multilevel data involves a hierarchy of nested populations, in
which data could be measured for several levels of
aggregation.

Examples:

I We could measure white-blood-cell counts for numerous
patients within several hospitals.

I We could measure test scores for numerous students within
several schools.



Hierarchical Bayes Estimation

I Assume we have data x from density f (x|θ) with a parameter
of interest θ.

I Typically we would choose a prior for θ that depends on some
hyperparameter(s) ψ.

I Instead of choosing fixed values for ψ, we could place a
hyperprior p(ψ) on it.

I Note that this hierarchy could continue for any number of
levels, but it is rare to need more than two levels for the prior
structure.



Hierarchical Bayes Estimation

I Our posterior is then:

π(θ,ψ|x) ∝ L(θ|x)p(θ|ψ)p(ψ)

I Posterior inference about θ is based on the marginal posterior
for θ:

π(θ|x) =

∫
ψ

π(θ,ψ|x) dψ

I Except in simple situations, such analysis typically requires
MCMC methods.



Hierarchical Bayes Example 1

I Example 1 (Economic data): Six economic indicators are
measured at 44 timepoints x1, . . . , x44 (labeled 1, 2, . . . , 44).

I We model each indicator Yi , i = 1, . . . , 6 as a function of
(centered) time as follows:

Yij ∼ N(β0i + β1ixj , τ)

β0i ∼ N(µβ0 , τβ0)

β1i ∼ N(µβ1 , τβ1)

τ ∼ gamma(0.01, 0.01)

µβ0 ∼ N(0, 0.01), µβ1 ∼ N(0, 0.01)

τβ0 ∼ gamma(0.01, 0.01), τβ1 ∼ gamma(0.01, 0.01)

I See WinBUGS example for inference on β0i and β1i ,
i = 1, 2, . . . , 6.



Hierarchical Bayes Example 2

I Example 2 (Italian marriage data): Data are marriage counts
(per 1000) in Italy for years from 1936 to 1951 (before,
during, and after World War II).

I We use a Poisson-Gamma hierarchical model that allows the
Poisson mean to vary across years:

Yi ∼ Pois(λi )

λi ∼ gamma(α, β)

α ∼ gamma(A,B)

β ∼ gamma(C ,D)

and Y1|λ1, . . . ,Yn|λn conditionally independent.

I Note this allows the λi ’s to be different, but following the
same distribution.



Hierarchical Bayes Example 2

I It can be shown the full conditionals are:

λi |α, β, y ∼ gamma(yi + α, 1 + β)

α|β,λ, y ∼ not a standard distribution

β|α,λ, y ∼ not a standard distribution

I A Gibbs sampler can be implemented, e.g., in WinBUGS.

I The inference is on the λ1, . . . , λn.



Exchangeability

I Recall for a fixed n, X1,X2, . . . ,Xn are exchangeable if
p(X1, . . . ,Xn) = p(Xπ1 , . . . ,Xπn) for any permutation
(π1, . . . , πn) of (1, . . . , n). (Finite exchangeability)

I Infinite exchangeability implies that every finite subset of
an infinite sequence X1,X2, . . . is exchangeable.

I From de Finetti’s theorem: Exchangeable ⇒ iid (True in
infinite case; approximately true in finite case)



Exchangeability

I Consider multilevel data, where the observations come from,
say, m groups:

I Data: Y1,Y2, . . . ,Ym where each

Yj = [Y1j , . . . ,Ynj j ]
′
for j = 1, . . . ,m.

I We can often treat Y1j , . . . ,Ynj j as exchangeable.
I It then makes sense to treat the data in group j as

conditionally iid given some group-specific parameter θj :

Y1j , . . . ,Ynj j |θj
iid∼ p(y |θj)

I Next, we can treat θ1, . . . , θm as exchangeable, if the groups
are a random sample from a larger population of groups.

I Again by de Finetti’s theorem:

θ1, . . . , θm|φ
iid∼ p(θ|φ)

where p(θ|φ) is some distribution governed by parameter φ.



Exchangeability

I In this m-sample data analysis:

p(y1j , . . . , ynj j |θj) describes the within-group sampling variability

p(θ1, . . . , θm|φ) describes the between-group sampling variability

p(φ) describes uncertainty about φ

I We could continue the hierarchy, putting hyperpriors on the
parameters in p(φ), but eventually we must stop.

I The highest-level prior is often given a diffuse form.



A Hierarchical Normal Model for Data from Several Groups

I Assume we have random samples from m populations, having
sample sizes n1, n2, . . . , nm.

I We specify the hierarchical data model:

Y1j , . . . ,Ynj j |µj , σ
2 iid∼ N(µj , σ

2) (within group-model)

µj |φ, τ2 iid∼ N(φ, τ2) (between-group model)

I This model assumes variability across group means, but group
variances are assumed to be constant (= σ2) across groups.



A Hierarchical Normal Model for Data from Several Groups

I We place (independent) priors on the unknown parameters
φ, τ2 and σ2:

1/σ2 ∼ gamma(ν1/2, ν1ν2/2)

1/τ2 ∼ gamma(η1/2, η1η2/2)

φ ∼ N(φ0, γ
2)



A Hierarchical Normal Model for Data from Several Groups

I We must approximate the joint posterior

π(µ1, . . . , µm, φ, τ2, σ2|y1, . . . , ym)

I We will derive the full conditional for each parameter and use
the Gibbs sampler to iteratively sample from these.

I Note the joint posterior is

∝ p(y1, . . . , ym|µ1, . . . , µm, φ, τ2, σ2)

× p(µ1, . . . , µm|φ, τ2, σ2)p(φ, τ2, σ2)

=

[ m∏
j=1

nj∏
i=1

p(yj |µj , σ
2)

][ m∏
j=1

p(µj |φ, τ2)

]
p(φ)p(τ2)p(σ2)

I Note that conditional on µj and σ2, the joint density of the
Yij ’s does not depend on φ and τ2.



A Hierarchical Normal Model for Data from Several Groups

I From the above, we see the full conditionals for φ and τ2

satisfy:

p(φ|µ1, . . . , µm, τ2, σ2, y1, . . . , ym) ∝ p(φ)
m∏

j=1

p(µj |φ, τ2)

p(τ2|µ1, . . . , µm, φ, σ2, y1, . . . , ym) ∝ p(τ2)
m∏

j=1

p(µj |φ, τ2)



A Hierarchical Normal Model for Data from Several Groups

I It can be shown that the full conditional for φ is normal and
the full conditional for τ2 is inverse gamma. Specifically:

φ|µ1, . . . , µm, τ2 ∼ N

( mµ̄
τ2 + φ0

γ2

m
τ2 + 1

γ2

,
1

m
τ2 + 1

γ2

)
and

1

τ2
|µ1, . . . , µm, φ ∼ gamma

(
η1 + m

2
,
η1η2 +

∑
j(µj − φ)2

2

)
I Similarly, the full conditional for any µj satisfies:

p(µj |φ, τ2, σ2, y1, . . . , ym) ∝ p(µj |φ, τ2)

nj∏
i=1

p(yij |µj , σ
2)

I Conditional on φ, τ2, σ2, µj is independent of the other µ’s
and of the data in the other groups.



A Hierarchical Normal Model for Data from Several Groups

I Then it can be shown:

µj |yj , σ
2, τ2, φ ∼ N

(
nj ȳj

σ2 + φ
τ2

nj

σ2 + 1
τ2

,
1

nj

σ2 + 1
τ2

)

I Similarly, the full conditional for σ2 is conditionally
independent of {φ, τ2}, given {y1, . . . , ym, µ1, . . . , µm}:

p(σ2|µ1, . . . , µm, y1, . . . , ym) ∝ p(σ2)
m∏

j=1

nj∏
i=1

p(yij |µj , σ
2)

∝ (σ2)−ν1/2+1e−
ν1ν2
2σ2 (σ2)−

P
nj

2 e
− 1

2σ2

P
j

P
i
(yij−µj )

2

Collecting terms, this is an inverse gamma, and:

1

σ2
|µ, y1, . . . , ym ∼ gamma

(
1
2

(
ν1+

m∑
j=1

nj

)
, 1

2

[
ν1ν2+

∑
j

∑
i

(yij−µj)
2
])



Example: Data from Several Groups

I Example 3 (Math scores): The data are math scores for
10th-grade students from m = 100 different urban high
schools.

I The sample sizes n1, . . . , nm are quite different across schools.
I The nationwide total (between plus within) variance for this

test is 100, and the nationwide mean is 50.
I We choose the priors

1/σ2 ∼ gamma(1/2, 100/2)

1/τ2 ∼ gamma(1/2, 100/2)

φ ∼ N(50, 25)

I We can then repeatedly cycle through

φ[s], τ2[s], σ2[s], µ
[s]
1 , . . . , µ

[s]
m (for s = 1, . . . ,S) using their full

conditionals and the Gibbs sampler.
I See R example with real schools data.


