CHAPTER 10 SLIDES START HERE



Hierarchical Models

» In hierarchical Bayesian estimation, we not only specify a
prior on the data model's parameter(s), but specify a further
prior (called a hyperprior) for the hyperparameters.

» This more complicated prior structure can be useful for
modeling hierarchical data structures, also called multilevel
data.

» Multilevel data involves a hierarchy of nested populations, in
which data could be measured for several levels of
aggregation.

Examples:

» We could measure white-blood-cell counts for numerous
patients within several hospitals.

» We could measure test scores for numerous students within
several schools.



Hierarchical Bayes Estimation

» Assume we have data x from density f(x|0) with a parameter
of interest 6.

» Typically we would choose a prior for 8 that depends on some
hyperparameter(s) ).

» Instead of choosing fixed values for 1, we could place a
hyperprior p() on it.
» Note that this hierarchy could continue for any number of

levels, but it is rare to need more than two levels for the prior
structure.



Hierarchical Bayes Estimation

» Our posterior is then:

(0, 9[x) oc L(01x)p(6]4)p(4)

» Posterior inference about 6 is based on the marginal posterior
for 0:

7(6]x) = /¢7r(e,wrx) dep

» Except in simple situations, such analysis typically requires
MCMC methods.



Hierarchical Bayes Example 1

» Example 1 (Economic data): Six economic indicators are
measured at 44 timepoints xi, ..., xas (labeled 1,2,...,44).

» We model each indicator Y;,i =1,...,6 as a function of
(centered) time as follows:

Yij ~ N(Boi + Brixj, T)
Boi ~ N(1p,, 73,)

Bii ~ Nupys )
T ~ gamma(0.01,0.01)

pa, ~ N(0,0.01), pug, ~ N(0,0.01)
T3, ~ gamma(0.01,0.01), 73, ~ gamma(0.01,0.01)

» See WinBUGS example for inference on (p; and [1;,
i=1,2,...,6.



Hierarchical Bayes Example 2

» Example 2 (ltalian marriage data): Data are marriage counts
(per 1000) in Italy for years from 1936 to 1951 (before,
during, and after World War II).

» We use a Poisson-Gamma hierarchical model that allows the
Poisson mean to vary across years:

Yi ~ Pois(\;)

Ai ~ gamma(a, 3)
a ~ gamma(A, B)
B ~ gamma(C, D)

and Yi|A1,..., Ya|A, conditionally independent.

» Note this allows the \;'s to be different, but following the
same distribution.



Hierarchical Bayes Example 2

» It can be shown the full conditionals are:

)\,-|a,ﬁ,y ~ gamma(yi + o, 1+ /8)
alB, A,y ~ not a standard distribution
Bla, A,y ~ not a standard distribution

» A Gibbs sampler can be implemented, e.g., in WinBUGS.

» The inference is on the A1,..., A,



Exchangeability

» Recall for a fixed n, X1, Xz, ..., X, are exchangeable if
p(Xi,..., Xn) = p(Xny, ..., Xz,) for any permutation
(71,...,mn) of (1,...,n). (Finite exchangeability)

» Infinite exchangeability implies that every finite subset of
an infinite sequence Xi, Xy, ... is exchangeable.

» From de Finetti's theorem: Exchangeable = iid (True in
infinite case; approximately true in finite case)



Exchangeability

>

>

Consider multilevel data, where the observations come from,
say, m groups:
Data: Y1,Y2,..., Y, where each

YJ:[Y]'J”YI‘IJJ], forj:]'""7m'

We can often treat Yy;,..., Yy as exchangeable.
It then makes sense to treat the data in group j as
conditionally iid given some group-specific parameter 0;:

iid
Yijs -5 Yailt ~ p(y16))

Next, we can treat 04, ...,0,, as exchangeable, if the groups
are a random sample from a larger population of groups.
Again by de Finetti's theorem:

01, ..., 0m|d % p(6]0)



Exchangeability

» In this m-sample data analysis:

p(Y1), - - - Yn;j|0;) describes the within-group sampling variability
p(01,...,0m|¢p) describes the between-group sampling variability
p(¢) describes uncertainty about ¢

» We could continue the hierarchy, putting hyperpriors on the
parameters in p(¢), but eventually we must stop.

» The highest-level prior is often given a diffuse form.



A Hierarchical Normal Model for Data from Several Groups

» Assume we have random samples from m populations, having
sample sizes ny, no, ..., Npy.

» We specify the hierarchical data model:

2 ||d

Yijso ooy Yojlpj, 0% ~ (1j,0%)  (within group-model)

2 ||d

pile, T (¢,7%) (between-group model)

» This model assumes variability across group means, but group
variances are assumed to be constant (= 02) across groups.



A Hierarchical Normal Model for Data from Several Groups

» We place (independent) priors on the unknown parameters
¢, 72 and o2
1/0° ~ gamma(v1/2,v112/2)
1/72 ~ gamma(n1/2,m72/2)
¢ ~ N(¢0,7%)



A Hierarchical Normal Model for Data from Several Groups

» We must approximate the joint posterior

7T(,L61, v ,Mm,¢, 7—270—2|y17 ses 7ym)

» We will derive the full conditional for each parameter and use
the Gibbs sampler to iteratively sample from these.
» Note the joint posterior is

X p(y17 e 7Ym’:u17 e 7/J’m7¢77—270-2)
X P(Hla cee 7um‘¢77-27 02)p(¢772u 02)

= ({11102 [TT o0t 7] st 20t
j=1

j=1i=1

» Note that conditional on y; and 02, the joint density of the
Yij's does not depend on ¢ and 72,



A Hierarchical Normal Model for Data from Several Groups

» From the above, we see the full conditionals for ¢ and 72

satisfy:
m
p(¢‘:u’17"‘7/~Lm77—270-2’y17"'7ym Hp /J’J|¢7
j=1
m
p(T2|,u17'-'7Mm7¢702,y17'--7ym HP :u’j|¢a
j=1



A Hierarchical Normal Model for Data from Several Groups

» It can be shown that the full conditional for ¢ is normal and
the full conditional for 72 is inverse gamma. Specifically:
. con(2 )
Hiyeoos bmy T~ )
" B+ B+5

P

and

mA+m mnz+ 3k — ¢)2)
2 2

1
ﬁ“ﬂa o ;Nm,ﬁb ~ gamma(
» Similarly, the full conditional for any y; satisfies:
nj
p(lu’j|¢? 7_2) 027 Yi,---» ym) X p()uj|¢7 7—2) H p(ylj|iu’1) 0-2)
i=1

» Conditional on ¢, 72, 02, wj is independent of the other y's
and of the data in the other groups.



A Hierarchical Normal Model for Data from Several Groups

» Then it can be shown:

”JYJ
+ 1
:U’J|YJ’U T:¢NN< +1 7nj+ )

» Similarly, the full conditional for o2 is conditionally
independent of {4, 72}, given {y1,...,Ym fi1, -+, tm}:

m
p(02|M17"'aum7y17'--7ym HHP ylj|:u‘j7
j=1li=1
R . 1)
. (02)71/1/2+1e—l;1;’22 (0_2)722"16 202 %:Zi:(yf 1)

Collecting terms, this is an inverse gamma, and:

1 m
?'”’ Yi;-- s ¥Ym ™~ gamma (é <V1+Z ”j)a%[VlvzﬂLZ ZUU‘MJVD
J=1 i i



Example: Data from Several Groups

>

Example 3 (Math scores): The data are math scores for
10th-grade students from m = 100 different urban high
schools.

The sample sizes nq, ..., n, are quite different across schools.
The nationwide total (between plus within) variance for this
test is 100, and the nationwide mean is 50.

We choose the priors

1/0% ~ gamma(1/2,100/2)
1/7% ~ gamma(1/2,100/2)
¢ ~ N(50,25)

We can then repeatedly cycle through
¢[5],T2[5],02[5],M[ls], e ,,uEf,] (for s =1,...,5) using their full
conditionals and the Gibbs sampler.

> See R example with real schools data.



