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Chapter 1: Introduction to Bayesian Data Analysis

I Bayesian statistical inference uses Bayes’ Law (Bayes’
Theorem) to combine prior information and sample data to
make conclusions about a parameter of interest.

I Bayesian inference differs from classical inference in that it
specifies a probability distribution for the parameter(s) of
interest.

I Why use Bayesian methods? Some reasons:

1. We wish to specifically incorporate previous knowledge we
have about a parameter of interest.

2. To logically update our knowledge about the parameter after
observing sample data

3. To make formal probability statements about the parameter of
interest.

4. To specify model assumptions and check model quality and
sensitivity to these assumptions in a straightforward way.
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I Why do people use classical methods?

1. If the parameter(s) of interest is/are truly fixed (without the
possibility of changing), as is possible in a highly controlled
experiment

2. If there is no prior information available about the parameter(s)
3. If they prefer “cookbook”-type formulas with little input from

the scientist/researcher

I Many reasons classical methods are more common than
Bayesian methods are historical:

1. Many methods were developed in the context of controlled
experiments.

2. Bayesian methods require a bit more mathematical formalism.
3. Historically (but not now) realistic Bayesian analyses had been

infeasible due to a lack of computing power.
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Motivation for Bayesian Modeling

I Bayesians treat unobserved data and unknown parameters in
similar ways.

I They describe each with a probability distribution.
I As their model, Bayesians specify:

1. A joint density function, which describes the form of the
distribution of the full sample of data (given the parameter
values)

2. A prior distribution, which describes the behavior of the
parameter(s) unconditional on the data

I The prior could reflect:

1. Uncertainty about a parameter that is actually fixed
OR

2. the variety of values that a truly stochastic parameter could
take.
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Exchangeability

I Bayesians usually assume the data values in the sample are
exchangeable: that is, reordering the data values does not
change the model.

I Example: In a social survey, respondents are asked whether
they are generally happy. Let

Yi =

{
1 if respondent i is happy

0 otherwise
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Exchangeability

I Consider the first 5 respondents. What are the probabilities of
these 3 outcomes?

p(1, 0, 0, 1, 1) =?

p(0, 1, 1, 0, 1) =?

p(1, 1, 0, 1, 0) =?

I If the data values are exchangeable, these three outcomes will
have the same probability.
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Exchangeability and iid

I Theorem: If the data are independent and identically
distributed (iid), i.e., a random sample, and θ follows the
distribution p(θ), then the data are exchangeable.

I Proof: Let Y1, . . . ,Yn be iid given θ and let θ ∼ p(θ).
Consider any permutation π of {1, . . . , n}. Then for any
y1, . . . , yn:
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Exchangeability and iid

p(y1, . . . , yn) =

∫
p(y1, . . . , yn|θ)p(θ) dθ

=

∫ [ n∏
i=1

p(yi |θ)
]
p(θ) dθ (since Yi iid)

=

∫ [ n∏
i=1

p(yπi |θ)
]
p(θ) dθ

(since a product doesn’t depend on order)

= p(yπ1 , . . . , yπn).

I ⇒ Y1, . . . ,Yn are exchangeable.
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Exchangeability and iid

I A famous theorem (de Finetti’s Theorem) shows the converse
is* also true:
Y1, . . . ,Yn are exchangeable for all n
⇒ Y1, . . . ,Yn are iid given θ, θ ∼ p(θ).

* = It is usually true: it’s only approximate when sampling from a
finite population without replacement.
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Different Interpretations of Probability

1. Frequentist definition of the probability of an event: If we
repeat an experiment a very large number of times, what is
the proportion of times the event occurs?

I Problem: For some situations, it is impossible to repeat (or
even conceive of repeating) the experiment many times.

I Example: The probability that Governor Haley is re-elected in
2014.

2. Subjective probability: Based on an individual’s degree of
belief that an event will occur.

I Example: A bettor is willing to risk up to $200 betting that
Haley will be re-elected, in order to win $100. The bettor’s
subjective P[Haley wins] is 2

3 .
I The Bayesian approach can naturally incorporate subjective

probabilities about the parameter, where appropriate.
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Some Probability Notation

I We denote events by letters such as A,B,C , . . .

I The idea of conditional probability is crucial in Bayesian
statistics:

P(A|B) =
P(A ∩ B)

P(B)

I We denote random variables by letters such as X , Y , etc.,
taking on values denoted by x , y , etc.

I The space of all possible values of the r.v. is called its
support.
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Some Probability Notation

I We will deal with both discrete and continuous r.v.’s.

I In general, let p(·) denote the probability distribution (p.m.f.
or p.d.f.) of a r.v.

I Thus p(X ) is the marginal distribution of X and p(X ,Y ) is
the joint distribution of X and Y .

I If X ,Y independent, then p(X ,Y ) = p(X )p(Y ).
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Some Probability Notation

I The expected value of any function h(X ) of X is:

E [h(X )] =

{∑
x∈X h(x)p(x) if X is discrete∫

X h(x)p(x) dx if X is continuous

where X denotes the support.

I Typically the distribution of X depends on some parameter(s),
say θ, so in fact p(X ) = p(X |θ).

David B. Hitchcock E-Mail: hitchcock@stat.sc.edu STAT J535: Introduction



Bayes’ Law

In its simplest form, with two events A and B, Bayes’ Law relates
the conditional probabilities P(A|B) and P(B|A).
Recall

P(A|B) =
P(A,B)

P(B)

and

P(B|A) =
P(B,A)

P(A)
=

P(A,B)

P(A)

Hence P(A,B) = P(A|B)P(B) = P(B|A)P(A)

⇒ P(A|B) =
P(B|A)P(A)

P(B)

Similarly,

P(B|A) =
P(A|B)P(B)

P(A)
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