
Bayesian Estimation and Shrinkage

I The posterior mean of µj (given φ, τ2, σ2 and yj) is
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I So the posterior mean of µj is pulled away from ȳj and
toward φ, the mean of the distribution of all the µj ’s.

I This is called shrinkage.

I How much is each µj shrunk? It depends on nj .

I For schools with a large sample size (large nj), shrinkage is
minimal.

I For schools with a few students (small nj), shrinkage is
substantial.



Bayesian Estimation and Shrinkage

I Example 1: (Schools 82 vs. 46)

Data: ȳ82 = 38.76, n82 = 5, µ̂82 = 42.53

ȳ46 = 40.18, n46 = 21, µ̂46 = 41.31

I Note φ̂ = 48.12.

I For school 82, we have substantial shrinkage toward φ̂.

I For school 46, we have less shrinkage toward φ̂.

I We might then rank school 82 ahead of school 46, because we
doubt that ȳ82 is a good estimate of school 82’s true mean,
being based on only 5 students.



Bayesian Estimation and Shrinkage

I Example 2: (Schools 67 and 51)

Data: ȳ67 = 65.02, n67 = 4, µ̂67 = 57.14

ȳ51 = 64.37, n51 = 19, µ̂51 = 61.84

I School 67 is shrunk down more toward φ̂.

I We expect school 51 to have a higher true mean even though
its sample mean was lower.

I Intuition: Whom would you trust more to make a free throw,
someone who has made 4 out of 4, or someone who has made
96 out of 100?



Empirical Bayes Estimation

I In this approach, we again do not specify particular values for
the prior parameters in ψ.

I Instead of placing a (hyperprior) distribution on ψ as in
hierarchical Bayes, the empirical Bayes approach is to
estimate ψ from the data.

I This is not “purely” Bayesian, since in a sense we are using
the data to determine the prior specification.

I Furthermore, the estimation of ψ must be done with
non-Bayesian techniques (like maximum likelihood or method
of moments).



Empirical Bayes Estimation

I If the prior on θ depends on hyperparameter(s) ψ, then the
posterior is:

π(θ|X,ψ) =
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I Now we use as the hyperparameter(s) some estimate of ψ,
such as the MLE of ψ based on q(X|ψ).



Examples: Empirical Bayes Estimation

I Example 1: Let Xi
iid∼ Pois(λi ), i = 1, . . . , n, and let

λi
iid∼ Gamma(α, β) with α known, β unknown.

Then q(Xi |β) =
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which is negative binomial.



Examples: Empirical Bayes Estimation
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and it can be shown that the MLE of β is β̂ =
α

x̄
.

I Using the prior λi ∼ Gamma(α, β̂), the posterior for λi is thus

λi |xi , β̂ ∼ Gamma(xi + α, 1 + β̂)

I Hence the Empirical Bayes estimator for λi (i = 1, . . . , n) is
the posterior mean
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