EXTRA CHAPTER SLIDES START HERE

Ordinal and Binary Probit Regression

- In Chapter 6(a), we studied a Poisson regression model, a type of model for count data.
- We now examine the probit regression model, which we apply to:

1. Binary (2-category) responses, and
2. Multi-category ordinal responses

Example: Ordinal Probit Regression

- Example 1: Consider the response variable $Y \in\{1,2,3,4,5\}$ that indicates the highest educational degree an individual has obtained.
- The categories for Y correspond to: No degree; High school; Asoociate's; Bachelor's; Graduate degree.
- In a regression model, we consider the explanatory variables:
$X_{1}=$ number of children the individual has
$X_{2}= \begin{cases}1 & \text { if either parent of individual has obtained college degree } \\ 0 & \text { otherwise }\end{cases}$
$X_{3}=X_{1} X_{2}$ (interaction variable)

Example: Ordinal Probit Regression

- Using a normal regression model for Y is inappropriate because:

1. the normal error assumption will be severely violated
2. the labels $\{1,2,3,4,5\}$ imply an "equal spacing" between types of degree that may not exist in reality.

- We assume in probit regression that the underlying, say, educational achievement of a person is some unobserved continuous variable Z.
- What we observe is the ordinal, categorized version, denoted Y.

Example: Ordinal Probit Regression

- Our model is thus:

$$
\begin{aligned}
Y_{i} & =g\left(Z_{i}\right), \quad i=1, \ldots, n \\
Z_{i} & =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\epsilon_{i} \\
\epsilon_{1}, \ldots, \epsilon_{n} & \stackrel{\text { iid }}{\sim} N(0,1)
\end{aligned}
$$

- The unknown parameters are: $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ and the nondecreasing function $g(\cdot)$, which relates the latent variable Z to the observed variable Y.
- Note $g(\cdot)$ can capture the location and scale of the distribution of the Y_{i} 's, so we may let $\operatorname{var}\left(\epsilon_{i}\right)=1$ and let the intercept $\beta_{0}=0$.

Example: Ordinal Probit Regression

- Since Y takes on $K=5$ ordered values, define $K-1$ "thresholds" $g_{1}, g_{2}, g_{3}, g_{4}$ that cut the range of Z into 5 categories:

$$
y=g(z)= \begin{cases}1 & \text { if }-\infty<z<g_{1} \\ 2 & \text { if } g_{1} \leq z<g_{2} \\ 3 & \text { if } g_{2} \leq z<g_{3} \\ 4 & \text { if } g_{3} \leq z<g_{4} \\ 5 & \text { if } g_{4} \leq z<\infty\end{cases}
$$

- We will use the Gibbs sampler to approximate the joint posterior of $\left\{\boldsymbol{\beta}, g_{1}, g_{2}, g_{3}, g_{4}, \mathbf{Z}\right\}$.

Full Conditional of β

- The full conditional of $\boldsymbol{\beta}$ depends only on \mathbf{Z} :

$$
\pi(\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{z}, \mathbf{g})=\pi(\boldsymbol{\beta} \mid \mathbf{z})
$$

- If we choose a multivariate normal prior

$$
\boldsymbol{\beta} \sim M V N\left(\mathbf{0}, n\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

then the full conditional is:

$$
\boldsymbol{\beta} \left\lvert\, \mathbf{z} \sim \operatorname{MVN}\left[\frac{n}{n+1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{z}, \frac{n}{n+1}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]\right.
$$

Full Conditional of \mathbf{Z}

- We know $Z_{i} \mid \boldsymbol{\beta} \sim N\left(\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}, 1\right)$.
- Given \mathbf{g} and $Y_{i}=y_{i}$, then $Z_{i} \in\left[g_{y_{i}-1}, g_{y_{i}}\right)$. Hence

$$
\pi\left(z_{i} \mid \boldsymbol{\beta}, \mathbf{y}, \mathbf{g}\right) \propto N\left(\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}, 1\right) \times I_{\left[a \leq z_{i}<b\right]}
$$

(a constrained normal distribution), where $a=g_{y_{i}-1}, b=g_{y_{i}}$.

- This can be sampled from fairly easily in R.

Full Conditional of \mathbf{g}

- Given \mathbf{y} and \mathbf{z}, we know g_{k} must be between

$$
a_{k}=\max \left\{z_{i}: y_{i}=k\right\} \text { and } b_{k}=\min \left\{z_{i}: y_{i}=k+1\right\}
$$

- We can choose constrained normal priors on the g_{k} 's so that the full conditional of g_{k} is $N\left(\mu_{k}, \sigma_{k}^{2}\right)$ constrained to the interval $\left[a_{k}, b_{k}\right)$.

Example: Ordinal Probit Regression

- Example 1: Educational achievement data on 959 working males.
- Let's use the priors: $\boldsymbol{\beta} \sim \operatorname{MVN}\left(\mathbf{0}, n\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$ and
$p(\mathbf{g}) \propto \prod_{k=1}^{4} \operatorname{dnorm}\left(g_{k}, 0,100\right)$
constrained so that $g_{1}<g_{2}<g_{3}<g_{4}$.
- R example on course web page: Posterior inference is made on $\beta_{1}, \beta_{2}, \beta_{3}$
- See plot of generated z_{1}, \ldots, z_{959} against the number of children for individuals $1, \ldots, 959$.
- Different slopes for $X_{2}=0$ and $X_{2}=1$.

