Frequentist Coverage for Bayesian Intervals

- Hartigan (1966) showed that for standard posterior intervals, an interval with $100(1-\alpha) \%$ Bayesian coverage will have

$$
P[L(\mathbf{X})<\theta<U(\mathbf{X}) \mid \theta]=(1-\alpha)+\epsilon_{n}
$$

where $\left|\epsilon_{n}\right|<a / n$ for some constant a.
\Rightarrow Frequentist coverage $\rightarrow 1-\alpha$ as $n \rightarrow \infty$.

- Note that many classical CI methods only achieve $100(1-\alpha) \%$ frequentist coverage asymptotically, as well.

Bayesian Credible Intervals

- A credible interval (or in general, a credible set) is the Bayesian analogue of a confidence interval.
- A $100(1-\alpha) \%$ credible set \mathcal{C} is a subset of Θ such that

$$
\int_{\mathcal{C}} \pi(\boldsymbol{\theta} \mid \mathbf{X}) d \boldsymbol{\theta}=1-\alpha
$$

- If the parameter space Θ is discrete, a sum replaces the integral.

Quantile-Based Intervals

- If θ_{L}^{*} is the $\alpha / 2$ posterior quantile for θ, and θ_{U}^{*} is the $1-\alpha / 2$ posterior quantile for θ, then $\left(\theta_{L}^{*}, \theta_{U}^{*}\right)$ is a $100(1-\alpha) \%$ credible interval for θ.

Note: $P\left[\theta<\theta_{L}^{*} \mid \mathbf{X}\right]=\alpha / 2$ and $P\left[\theta>\theta_{U}^{*} \mid \mathbf{X}\right]=\alpha / 2$.

$$
\begin{aligned}
& \Rightarrow P\left\{\theta \in\left(\theta_{L}^{*}, \theta_{U}^{*}\right) \mid \mathbf{X}\right\} \\
& =1-P\left\{\theta \notin\left(\theta_{L}^{*}, \theta_{U}^{*}\right) \mid \mathbf{X}\right\} \\
& =1-\left(P\left[\theta<\theta_{L}^{*} \mid \mathbf{X}\right]+P\left[\theta>\theta_{U}^{*} \mid \mathbf{X}\right]\right) \\
& =1-\alpha
\end{aligned}
$$

Quantile-Based Intervals

Picture:

Example: Quantile-Based Interval

- Suppose X_{1}, \ldots, X_{n} are the durations of cabinets for a sample of cabinets from Western European countries.
- We assume the X_{i} 's follow an exponential distribution.

$$
\begin{aligned}
p\left(X_{i} \mid \theta\right) & =\theta e^{-\theta X_{i}}, \quad X_{i}>0 \\
\Rightarrow L(\theta \mid \mathbf{X}) & =\theta^{n} e^{-\theta \sum_{i=1}^{n} x_{i}}
\end{aligned}
$$

Suppose our prior distribution for θ is

$$
p(\theta) \propto 1 / \theta, \quad \theta>0
$$

\Rightarrow Larger values of θ are less likely a priori.

Example: Quantile-Based Interval

Then

$$
\begin{aligned}
\pi(\theta \mid \mathbf{X}) & \propto p(\theta) L(\theta \mid \mathbf{X}) \\
& \propto\left(\frac{1}{\theta}\right) \theta^{n} e^{-\theta \sum x_{i}} \\
& =\theta^{n-1} e^{-\theta \sum x_{i}}
\end{aligned}
$$

- This is the kernel of a gamma distribution with "shape" parameter n and "rate" parameter $\sum_{i=1}^{n} x_{i}$.
- So including the normalizing constant,

$$
\pi(\theta \mid \mathbf{X})=\frac{\left(\sum x_{i}\right)^{n}}{\Gamma(n)} \theta^{n-1} e^{-\theta \sum x_{i}}, \quad \theta>0
$$

Example: Quantile-Based Interval

- Now, given the observed data x_{1}, \ldots, x_{n}, we can calculate any quantiles of this gamma distribution.
- The 0.05 and 0.95 quantiles will give us a 90% credible interval for θ.
- See R example with real data on course web page.

Example: Quantile-Based Interval

- Suppose we feel $p(\theta)=1 / \theta$ is too subjective and favors small values of θ too much.
- Instead, let's consider the noninformative prior

$$
p(\theta)=1, \quad \theta>0
$$

(favors all values of θ equally).

- Then our posterior is

$$
\begin{aligned}
\pi(\theta \mid \mathbf{X}) & \propto p(\theta) L(\theta \mid \mathbf{X}) \\
& =(1) \theta^{n} e^{-\theta \sum x_{i}} \\
& =\theta^{(n+1)-1} e^{-\theta \sum x_{i}}
\end{aligned}
$$

\Rightarrow This posterior is a gamma with parameters
$(n+1)$ and $\sum x_{i}$.

- We can similarly find the equal-tail credible interval.

Example 2: Quantile-Based Interval

- Consider 10 flips of a coin having $P\{$ Heads $\}=\theta$.
- Suppose we observe 2 "heads".
- We model the count of heads as binomial:

$$
p(X \mid \theta)=\binom{10}{X} \theta^{X}(1-\theta)^{10-X}, \quad x=0,1, \ldots, 10
$$

- Let's use a uniform prior for θ :

$$
p(\theta)=1, \quad 0 \leq \theta \leq 1
$$

Example 2: Quantile-Based Interval

- Then the posterior is:

$$
\begin{aligned}
\pi(\theta \mid x) & \propto p(\theta) L(\theta \mid x) \\
& =(1)\binom{10}{x} \theta^{x}(1-\theta)^{10-x} \\
& \propto \theta^{x}(1-\theta)^{10-x}, \quad 0 \leq \theta \leq 1
\end{aligned}
$$

- This is a beta distribution for θ with parameters $x+1$ and $10-x+1$.
- Since $x=2$ here, $\pi(\theta \mid x=2)$ is beta(3,9).
- The 0.025 and 0.975 quantiles of a beta $(3,9)$ are $(.0602$, .5178), which is a 95% credible interval for θ.

