The Gamma/Poisson Bayesian Model

▶ If our data $X_1, ..., X_n$ are iid Poisson(λ), then a gamma(α, β) prior on λ is a **conjugate** prior. Likelihood:

$$L(\lambda|\mathbf{x}) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum x_i}}{\prod_{i=1}^{n} (x_i!)}$$

Prior:

$$p(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}, \ \lambda > 0.$$

 \Rightarrow Posterior:

$$\pi(\lambda|\mathbf{x}) \propto \lambda^{\sum x_i + \alpha - 1} e^{-(n+\beta)\lambda}, \ \lambda > 0.$$

$$\Rightarrow \pi(\lambda|\mathbf{x})$$
 is gamma $(\sum x_i + \alpha, n + \beta)$. (Conjugate!)

The Gamma/Poisson Bayesian Model

► The posterior mean is:

$$\hat{\lambda}_{B} = \frac{\sum x_{i} + \alpha}{n + \beta}$$

$$= \frac{\sum x_{i}}{n + \beta} + \frac{\alpha}{n + \beta}$$

$$= \left[\frac{n}{n + \beta}\right] \left(\frac{\sum x_{i}}{n}\right) + \left[\frac{\beta}{n + \beta}\right] \left(\frac{\alpha}{\beta}\right)$$

▶ Again, the data get weighted more heavily as $n \to \infty$.

Bayesian Learning

- ▶ We can use the Bayesian approach to update our information about the parameter(s) of interest sequentially as new data become available.
- Suppose we formulate a prior for our parameter θ and observe a random sample \mathbf{x}_1 .
- ► Then the posterior is

$$\pi(\theta|\mathbf{x}_1) \propto p(\theta)L(\theta|\mathbf{x}_1)$$

▶ Then we observe a new (independent) sample x_2 .

Bayesian Learning

We can use our previous posterior as the new prior and derive a new posterior:

$$\begin{split} \pi(\theta|\mathbf{x}_1,\mathbf{x}_2) &\propto \pi(\theta|\mathbf{x}_1) L(\theta|\mathbf{x}_2) \\ &\propto \rho(\theta) L(\theta|\mathbf{x}_1) L(\theta|\mathbf{x}_2) \\ &= \rho(\theta) L(\theta|\mathbf{x}_1,\mathbf{x}_2) \\ \text{(since } \mathbf{x}_1,\mathbf{x}_2 \text{ independent)} \end{split}$$

- Note this is the same posterior we would have obtained had x₁ and x₂ arrived at the same time!
- ► This "sequential updating" process can continue indefinitely in the Bayesian setup.

CHAPTER 3 SLIDES START HERE

Why Normal Models?

- Why is it so common to model data using a normal distribution?
- Approximately normally distributed quantities appear often in nature.
- CLT tells us any variable that is basically a sum of independent components should be approximately normal.
- Note \bar{X} and S^2 are independent when sampling from a normal population so if beliefs about the mean are independent of beliefs about the variance, a normal model may be appropriate.

Why Normal Models?

- ▶ The normal model is analytically convenient (exponential family, sufficient statistics \bar{X} and S^2)
- ▶ Inference about the population mean based on a normal model will be correct as $n \to \infty$ even if the data are truly non-normal.
- When we assume a normal likelihood, we can get a wide class of posterior distributions by using different priors.

- ▶ Simple situation: Assume data $X_1, ..., X_n$ are iid $N(\mu, \sigma^2)$, with μ unknown and σ^2 known.
- We will make inference about μ .
- The likelihood is

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}}$$

▶ A conjugate prior for μ is $\mu \sim N(\delta, \tau^2)$:

$$p(\mu) = (2\pi\tau^2)^{-1/2} e^{-\frac{1}{2\tau^2}(\mu - \delta)^2}$$

So the posterior is:

$$\pi(\mu|\mathbf{x}) \propto L(\mu|\mathbf{x})p(\mu)$$

$$\propto \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}} e^{-\frac{1}{2\tau^{2}}(\mu-\delta)^{2}}$$

$$= \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma^{2}} \sum_{i=1}^{n} (x_{i}-\mu)^{2} + \frac{1}{\tau^{2}} (\mu-\delta)^{2}\right]\right\}$$

$$= \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma^{2}} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\mu + \mu^{2}) + \frac{1}{\tau^{2}} (\mu^{2} - 2\mu\delta + \delta^{2})\right]\right\}$$

So the posterior is:

$$\pi(\mu|\mathbf{x}) \propto \exp\left\{-\frac{1}{2}\frac{1}{\sigma^2\tau^2}\left(\tau^2\sum x_i^2 - 2\tau^2\mu n\bar{x} + n\mu^2\tau^2\right) + \sigma^2\mu^2 - 2\sigma^2\mu\delta + \sigma^2\delta^2\right)\right\}$$

$$= \exp\left\{-\frac{1}{2}\frac{1}{\sigma^2\tau^2}\left[\mu^2(\sigma^2 + n\tau^2) - 2\mu(\delta\sigma^2 + \tau^2n\bar{x}) + \left(\delta^2\sigma^2 + \tau^2\sum x_i^2\right)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\mu^2\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right) - 2\mu\left(\frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2}\right) + k\right]\right\}$$
(where k is some constant)

Hence
$$\pi(\mu|\mathbf{x}) \propto \exp\left\{-\frac{1}{2}\left[\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right)\left(\mu^2 - 2\mu\left(\frac{\frac{\delta}{\tau^2} + \frac{n\bar{\mathbf{x}}}{\sigma^2}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}\right) + k\right)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right)\left(\mu - \frac{\frac{\delta}{\tau^2} + \frac{n\bar{\mathbf{x}}}{\sigma^2}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}\right)^2\right]\right\}$$

 \blacktriangleright Hence the posterior for μ is simply a normal distribution with mean

$$\frac{\frac{\delta}{\tau^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}$$

and variance

$$\left(\frac{1}{\tau^2} + \frac{n}{\sigma^2}\right)^{-1} = \frac{\tau^2 \sigma^2}{\sigma^2 + n\tau^2}$$

- ▶ The **precision** is the reciprocal of the **variance**.
- ▶ Here, $\frac{1}{\tau^2}$ is the **prior precision** . . .
- $ightharpoonup \frac{n}{\sigma^2}$ is the data precision ...
- ▶ ... and $\frac{1}{\tau^2} + \frac{n}{\sigma^2}$ is the **posterior precision**.

▶ Note the posterior mean $E[\mu|\mathbf{x}]$ is simply

$$\frac{1/\tau^2}{1/\tau^2 + n/\sigma^2} \delta + \frac{n/\sigma^2}{1/\tau^2 + n/\sigma^2} \bar{x},$$

a combination of the prior mean and the sample mean.

- ▶ If the prior is highly precise, the weight is large on δ .
- ▶ If the data are highly precise (e.g., when n is large), the weight is large on \bar{x} .
- ▶ Clearly as $n \to \infty$, $E[\mu|\mathbf{x}] \approx \bar{\mathbf{x}}$, and $var[\mu|\mathbf{x}] \approx \frac{\sigma^2}{n}$ if we choose a large prior variance τ^2 .
- ▶ This implies that for τ^2 large and n large, Bayesian and frequentist inference about μ will be nearly identical.