
Conjugate Analysis for the Linear Model

I If we have good prior knowledge that can help us specify
priors for β and σ2, we can use conjugate priors.

I Following the procedure in Christensen, Johnson, Branscum,
and Hanson (2010), we will actually specify a prior for the

error precision parameter τ =
1

σ2
:

τ ∼ gamma(a, b)

I This is analogous to placing an inverse gamma prior on σ2.

I Then our prior on β will depend on τ :

β|τ ∼ MVN
(
δ, τ−1[X̃

−1
D(X̃

−1
)
′
]
)

(Note τ−1 = σ2)



Conjugate Analysis for the Linear Model

I We will specify a set of k a priori reasonable hypothetical
observations having predictor vectors x̃1, . . . , x̃k (these —
along with a column of 1’s — will form the rows of X̃) and
prior expected response values ỹ1, . . . , ỹk .

I Our MVN prior on β is equivalent to a MVN prior on X̃β:

X̃β|τ ∼ MVN(ỹ, τ−1D)

I Hence prior mean of X̃β is ỹ, implying that the prior mean δ

of β is X̃
−1

ỹ.

I D−1 is a diagonal matrix whose diagonal elements represent
the weights of the “hypothetical” observations.

I Intuitively, the prior has the same “worth” as tr(D−1)
observations.



Conjugate Analysis for the Linear Model

I The joint density is

π(β, τ,X, y) ∝ τn/2τn/2|D|−1/2τ a−1e−bτ

× exp
{
−1

2(Xβ − y)
′
(τ−1I)−1(Xβ − y)

}
× exp

{
−1

2(X̃β − ỹ)
′
(τ−1D)−1(X̃β − ỹ)

}

I It can be shown that the conditional posterior for β|τ is:

β|τ,X, y ∼ MVN
(
β̂, τ−1(X

′
X + X̃

′
D−1X̃)−1

)
where

β̂ = (X
′
X + X̃

′
D−1X̃)−1[X

′
y + X̃

′
D−1ỹ]



Conjugate Analysis for the Linear Model

I And the posterior for τ is:

τ |X, y ∼ gamma
(n + 2a

2
,
n + 2a

2
s∗

)
where

s∗ =
(y − Xβ̂)

′
(y − Xβ̂) + (ỹ − X̃β̂)

′
D−1(ỹ − X̃β̂) + 2b

n + 2a

I The subjective information is incorporated via β̂ (a function of
X̃ and ỹ) and s∗ (a function of β̂, a, and b).



Conjugate Analysis for the Linear Model

I While the conditional posterior π(β|τ,X, y) is multivariate
normal, the marginal posterior π(β|X, y) is a (scaled)
noncentral multivariate t-distribution.

I In making inference about β, it is easier to use the conditional
posterior for β|τ .

I Rather than basing inference on the posterior for β|τ̂ (by
plugging in a posterior estimate of τ), it is more appropriate
to sample random values τ [1], . . . , τ [J] from the posterior
distribution of τ , and then randomly sample from the
conditional posterior of β|τ [j], j = 1, . . . , J.

I Posterior point estimates and interval estimates can then be
based on those random draws.



Prior Specification for the Conjugate Analysis

I We will specify a matrix X̃ of hypothetical predictor values.

I We also specify (via expert opinion or previous knowledge) a
corresponding vector ỹ of reasonable response values for such
predictors.

I The number of such “hypothetical observations” we specify
must be one more than the number of predictor variables in
the regression.

I Our prior mean for β will be X̃
−1

ỹ.



Prior Specification for the Conjugate Analysis

I We also must specify the shape parameter a and the rate
parameter b for the gamma prior on τ .

I One strategy is to choose a first, based on the degree on
confidence in our prior.

I For a given a, we can view the prior as being “worth” the
same as 2a sample observations.

I A larger value of a indicates we are more confident in our
prior.



Prior Specification for the Conjugate Analysis

I Here is one strategy for specifying b:

I Consider any of the “hypothetical observations” — take the
first, for example.

I If ỹ1 is the prior expected response for a hypothetical
observation with predictors x̃1, then let ỹmax be the a priori
maximum reasonable response for a hypothetical
observation with predictors x̃1.

I Then (based on the normal distribution) let a prior guess for σ

be
ỹmax − ỹ1

1.645
.

I Since τ =
1

σ2
, this gives us a reasonable guess for τ .

I Set this guess for τ equal to the mean
a

b
of the gamma prior

for τ .

I Since we have already specified a, we can solve for b.



Example of a Conjugate Analysis

I Example in R with Automobile Data Set

I We can get point and interval estimates for τ (and thus for
σ2).

I We can get point and interval estimates for the elements of β
most easily by drawing from the posterior distributions of τ
and then β|τ ..



A Bayesian Approach to Model Selection

I In exploratory regression problems, we often must select which
subset of our potential predictor variables produces the “best
model.”

I A Bayesian may consider the possible models and compare
them based on their posterior probabilities.

I Note that if the value of coefficient βj is 0, then variable Xj is
not needed in the model.

I Let βj = zjbj for each j , where zj = 0 or 1 and bj ∈ (−∞,∞).

I Then our model is

Yi = z0b0+z1b1Xi1+z2b2Xi2+· · ·+zk−1bk−1Xi ,k−1+εi , i = 1, . . . , n

where any zj = 0 indicates that this predictor variable does
not belong in the model.



A Bayesian Approach to Model Selection

Example: Oxygen uptake example:
X1 = group, X2 = age, X3 = group × age:

z = (z0, z1, z2, z3) True E [Y |x,b, z]
(1,0,0,0) b0

(1,1,0,0) b0 + b1 group
(1,0,1,0) b0 + b2 age
(1,1,1,0) b0 + b1 group + b2 age
(1,1,1,1) b0 + b1 group + b2 age + b3 group× age



A Bayesian Approach to Model Selection

I For each possible value of the vector z, we calculate the
posterior probability for that model:

I For any particular z∗, say:

π(z∗|y,X) =
p(z∗)p(y|X, z∗)∑
z

p(z)p(y|X, z)

I This involves a prior p(·) on each possible model — a
noninformative approach would be to let all these prior
probabilities be equal.

I If there are a large number of potential predictors, we would
use a method called Gibbs sampling) (more on this later) to
search over the many models.



Example of Bayesian Model Selection

I Example in R with Oxygen Data Set

I We can consider all possible subsets of set of predictor
variables:

I We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms
appear):


