Conjugate Analysis for the Linear Model

» If we have good prior knowledge that can help us specify
priors for 3 and o2, we can use conjugate priors.

» Following the procedure in Christensen, Johnson, Branscum,

and Hanson (2010), we will actually specify a prior for the
error precision parameter 7 = —:
o

T ~ gamma(a, b)

» This is analogous to placing an inverse gamma prior on o2.

» Then our prior on 3 will depend on 7:
Bl ~ MVN(&,T—l[)"(‘ID()"(‘l)’])

(Note 771 = 02)



Conjugate Analysis for the Linear Model

» We will specify a set of k a priori reasonable hypothetical

observations having predictor vectors X1, ..., X, (these —
along with a column of 1's — will form the rows of X) and
prior expected response values ¥;,...,¥,.

» Our MVN prior on 3 is equivalent to a MVN prior on )~(,6:
XB|r ~ MVN(§, 7 'D)

» Hence prior mean of X3 is §, implying that the prior mean &
of Bis X .

» D! is a diagonal matrix whose diagonal elements represent
the weights of the “hypothetical” observations.

» Intuitively, the prior has the same “worth” as tr(D 1)
observations.



Conjugate Analysis for the Linear Model

» The joint density is
W(B, X, y) o 7_n/27_n/2‘D|71/27_aflefb‘r
(XB-y) (~ ) (XB - y)}

> /

(X8 -5) (-'D) (X8 -9)}

X exp{—

N = N

X exp{—

» It can be shown that the conditional posterior for 3|7 is:
BT, X,y ~ MVN(B, Tﬁl(X/X + )N(/Dfl)N()fl)

where

A

B=XX+XD X)Xy +XD 1§



Conjugate Analysis for the Linear Model

» And the posterior for 7 is:

n+2a n+2as*)

T\X,ngamma< T

where

. (y=XB)(y—XB)+(F—XB)D'(§ — XB) +2b
N n—+2a

» The subjective information is incorporated via B (a function of
X and ¥) and s* (a function of 3, a, and b).



Conjugate Analysis for the Linear Model

» While the conditional posterior 7(3|7, X,y) is multivariate
normal, the marginal posterior m(3|X,y) is a (scaled)
noncentral multivariate t-distribution.

» In making inference about 3, it is easier to use the conditional
posterior for 3|7.

» Rather than basing inference on the posterior for 3|7 (by
plugging in a posterior estimate of 7), it is more appropriate
to sample random values 711, ... 7] from the posterior
distribution of 7, and then randomly sample from the
conditional posterior of 8|70, j =1,...,J.

» Posterior point estimates and interval estimates can then be
based on those random draws.



Prior Specification for the Conjugate Analysis

» We will specify a matrix X of hypothetical predictor values.

» We also specify (via expert opinion or previous knowledge) a
corresponding vector ¥ of reasonable response values for such
predictors.

» The number of such “hypothetical observations” we specify
must be one more than the number of predictor variables in

the regression.

» Our prior mean for 3 will be )"(’19.



Prior Specification for the Conjugate Analysis

» We also must specify the shape parameter a and the rate
parameter b for the gamma prior on 7.

» One strategy is to choose a first, based on the degree on
confidence in our prior.

» For a given a, we can view the prior as being “worth” the
same as 2a sample observations.

» A larger value of a indicates we are more confident in our
prior.



Prior Specification for the Conjugate Analysis

» Here is one strategy for specifying b:

» Consider any of the “hypothetical observations” — take the
first, for example.

» If y; is the prior expected response for a hypothetical
observation with predictors X1, then let ¥, be the a priori
maximum reasonable response for a hypothetical
observation with predictors X;.

» Then (based on the normal distribution) let a prior guess for o
ymax — yl
be ="——.
¢ 1645

: 1 .
» Since T = —;, this gives us a reasonable guess for 7.
g

. a .
» Set this guess for 7 equal to the mean 5 of the gamma prior
for 7.
» Since we have already specified a, we can solve for b.



Example of a Conjugate Analysis

» Example in R with Automobile Data Set

» We can get point and interval estimates for 7 (and thus for
2
o).

» We can get point and interval estimates for the elements of 3
most easily by drawing from the posterior distributions of 7
and then S|7..



A Bayesian Approach to Model Selection

» In exploratory regression problems, we often must select which
subset of our potential predictor variables produces the “best
model.”

» A Bayesian may consider the possible models and compare
them based on their posterior probabilities.

> Note that if the value of coefficient 3; is 0, then variable X; is
not needed in the model.

> Let 3 = z;b; for each j, where zj =0 or 1 and b; € (—o0, 00).

» Then our model is
Yi = 20bo+z1 b1 Xin+ 2202 Xio++ - -+ 2z _1 b1 Xj k—1+€;, i =1,...,n

where any z; = 0 indicates that this predictor variable does
not belong in the model.



A Bayesian Approach to Model Selection

Example: Oxygen uptake example:
X1 = group, Xo = age, X3 = group X age:

z = (z2,21,22,23) | True E[Y]x,b, 2]
(1,0,0,0) bo
(1,1,0,0) bg + b1 group
(1,0,1,0) by + by age
(1,1,1,0) bg + b1 group + by age
(1,1,1,1) bg + by group + by age + bs group X age




A Bayesian Approach to Model Selection

» For each possible value of the vector z, we calculate the
posterior probability for that model:

» For any particular z*, say:

p(z*)p(ylX,z")
;p(Z)p(yIX,Z)

7[-(2*|y7 X) =

» This involves a prior p(-) on each possible model — a
noninformative approach would be to let all these prior
probabilities be equal.

» If there are a large number of potential predictors, we would
use a method called Gibbs sampling) (more on this later) to
search over the many models.



Example of Bayesian Model Selection

» Example in R with Oxygen Data Set

» We can consider all possible subsets of set of predictor
variables:

» We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms

appear):



