Testing the Usefulness of the Model

For the SLR model, $Y = \beta_0 + \beta_1 X + \varepsilon$.

Note: X is completely useless in helping to predict Y if and only if $\beta_1 = 0$.

So to test the usefulness of the model for predicting Y, we test: $\beta = 0$

If we reject H_0 and conclude H_a is true, then we conclude that X does provide information for the prediction of Y. $\left(\begin{array}{c} \times \\ \times \end{array} \right)$ in early related to Y)

Picture:

Recall that the estimate $\hat{\beta}_1$ is a statistic that depends on the sample data.

This \hat{eta}_1 has a sampling distribution.

If our four SLR assumptions hold, the sampling distribution of $\hat{\beta}_1$ is normal with mean β_1 and standard deviation $\frac{\sigma}{\sqrt{SS_{\times\times}}}$ which we estimate by $\frac{S}{\sqrt{SS_{\times\times}}}$

Under H₀: $\beta_1 = 0$, the statistic $\frac{\hat{\beta}_1}{s / \sqrt{SS_{xx}}}$ has a t-distribution with n - 2 d.f.

Test for Model Usefulness

One-Tailed Tests		Two-Tailed Test
$H_0: \beta_1 = 0$	$H_0: \beta_1 = 0$	H_0 : $\beta_1 = 0$
$H_a: \beta_1 < 0$	$H_a: \beta_1 > 0$	H_a : $\beta_1 \neq 0$
Test statistic:	$t = \frac{\hat{\beta}_1}{s / \sqrt{SS_{xx}}}$	

Rejection region:

$$t < -t_{\alpha}$$
 $t > t_{\alpha}$ $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$

P-value:

left tail area right tail area 2*(tail area outside t) outside t

Is reaction time truly linearly related to drug amount?

Example: In the drug reaction example, recall $\beta_1 = 0.7$. Is the real β_1 significantly different from 0? (Use $\alpha = .05$.)

$$t = \frac{\hat{\beta}_{1}}{S/SSXX}$$
 To calculate $S = VMSE$,
note $\Sigma Y_{i}^{2} = 1^{2} + 1^{2} + 2^{2} + 2^{2} + 4^{2} = 26$

$$SS_{\gamma\gamma} = 26 - \frac{(10)^2}{5} = 26 - 20 = 6$$

$$SSE = SS_{yy} - \hat{\beta}_1 SS_{xy} = 6 - (0.7)(7) = 1.1$$

$$SSE = SS_{yy} - \hat{\beta}_1 SS_{xy} = 6 - (0.7)(7) = 1.1$$

$$MSE = \frac{SSE}{n-2} = \frac{1.1}{3} = 0.3667$$
Calculations

Recall
$$SS_{xx} = 10$$
, so $t = \frac{0.7}{.606/\sqrt{10}} = \frac{0.7}{.19} = \frac{3.68}{.606}$

|t|=3.68>3.182, so we reject Ho. We conclude the true slope is not zero and that drug amount is a useful predictor of reaction time.

(they are linearly related). P-value = 2(.02) = .04

A $100(1-\alpha)\%$ Confidence Interval for the true slope β_1 is given by:

$$\hat{\beta}_1 + t_{\alpha/2} \left(\frac{S}{\sqrt{SS_{xx}}} \right)$$

where $t_{\alpha/2}$ is based on n-2 d.f.

In our example, a 95% CI for β_1 is: $-\alpha = .95 \Rightarrow \alpha = .05$

$$0.7 \pm (3.182) \left(\frac{.606}{\sqrt{10}} \right)$$

With 95% confidence, for each one-percent increase in drug amount, the expected reaction time increases by between 0.09 seconds and 1.31 seconds.

Correlation

The scatterplot gives us a general idea about whether there is a linear relationship between two variables.

More precise: The <u>coefficient of correlation</u> (denoted r) is a numerical measure of the <u>strength</u> and <u>direction</u> of the <u>linear</u> relationship between two variables.

Formula for r (the correlation coefficient between two variables X and Y):

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$$

Most computer packages will also calculate the correlation coefficient.

Interpreting the correlation coefficient:

- Positive $r \Rightarrow$ The two variables are <u>positively</u> <u>associated</u> (large values of one variable correspond to large values of the other variable)
- Negative $r \Rightarrow$ The two variables are <u>negatively</u> associated (large values of one variable correspond to small values of the other variable)
- $r = 0 \implies$ No linear association between the two variables.

Note: $-1 \le r \le 1$ always.

How far r is from 0 measures the *strength* of the linear relationship:

- r nearly 1 => Strong positive relationship between the two variables
- r nearly -1 => Strong negative relationship between the two variables linear

• r near 0 => Weak relationship between the two variables

Example (Drug/reaction time data):

Recall
$$SS_{xx} = 10$$
, $SS_{xy} = 7$, $SS_{yy} = 6$

$$r = \frac{7}{\sqrt{(10)(6)}} = \frac{7}{7.746} = 0.9037$$
Interpretation? For these five subjects, there

Interpretation? For these five subjects, there is a strong, positive linear relationship between drug amount and reaction time.

Notes: (1) Correlation makes no distinction between predictor and response variables.

(2) Variables must be numerical to calculate r.

Examples: What would we expect the correlation to be if our two variables were:

- (1) Work Experience & Salary? Positive
- (2) Weight of a Car & Gas Mileage? Negative

Some Cautions

Example:

Speed of a car (X)	20	30	40	<u>50</u>	60
Mileage in mpg (Y)	24	28	30	28	24

Scatterplot of these data:

Calculation will show that r = 0 for these data.

Are the two variables related? Yes, but it is not a linear association r does not measure curvilinear association between 2 variables.

Another caution: Correlation between two variables does not automatically imply that there is a cause-effect relationship between them.

Note: The population correlation coefficient between two variables is denoted ρ . To test H_0 : $\rho=0$, we simply use the equivalent test of H_0 : $\beta_1=0$ in the SLR model. If this null hypothesis is rejected, we conclude there is a significant correlation between the two variables.

The square of the correlation coefficient is called the coefficient of determination, r^2 .

Interpretation: r^2 represents the proportion of sample variability in Y that is explained by its linear relationship with X.

$$r^2 = 1 - \frac{SSE}{SS_{yy}}$$
 (r² always between 0 and 1)

For the drug/reaction time example, $r^2 = (.9037)^2 = .8167$

Interpretation: About 82% of the sample variation in reaction time can be explained by its linear relationship with drug amount.