Relationship between a CI and a (two-sided) hypothesis test:

• A test of H ₀ : $\mu = m^*$ vs. H _a : $\mu \neq m^*$ will reject H ₀ if and only if a corresponding CI for μ does not contain the number m^* . $ - $
Example: A 95% CI for μ is (2.7, 5.5).
(1) At $\alpha = 0.05$, would we reject H_0 : $\mu = 3$ in favor of H_a : $\mu \neq 3$? No. Here, 3 is a reasonable value for \mathcal{M} .
(2) At $\alpha = 0.05$, would we reject H_0 : $\mu = 2$ in favor of H_a : $\mu \neq 2$? Yes. 2 is not a reasonable value
for μ (it falls outside the 95% CI) (3) At $\alpha = 0.10$, would we reject H_0 : $\mu = 2$ in favor of H_a :
$\mu \neq 2$? Yes. 2 would certainly also be outside the (narrower) 90% CI for this sample. (4) At $\alpha = 0.01$, would we reject H ₀ : $\mu = 3$ in favor of H _a :
μ≠3? No. 3 would certainly also be
inside the (wider) 99% CI for this
Sample.

Power of a Hypothesis Test

• Recall the significance level α is our desired P(Type I error) = P(Reject $H_0 \mid H_0$ true)

The other type of error in hypothesis testing: Type II error = "Fail to reject Ho | Ho false" P(Type II error) = β = P(Fail to reject Ho | Ho false) The power of a test is P(Reject Ho | Ho false) = $1 - \beta$

• High power is desirable, but we have little control over it (different from α)

Calculating Power: The power of a test about μ depends on several things: α , n, σ , and the true μ .

Example 1: Suppose we test whether the true mean nicotine contents in a population of cigarettes is greater than 1.5 mg, using $\alpha = 0.01$.

$$H_0: M = 1.5$$
 $H_a: M > 1.5$

We take a random sample of 36 cigarettes. Suppose we know $\sigma = 0.20$ mg. Our test statistic is

$$Z = \frac{X - \mu_0}{\sqrt{n}} = \frac{X - 1.5}{0.20 / \sqrt{36}}$$

We reject H_0 if: $Z > Z_{.01} = 2.326$

$$\Rightarrow \frac{\overline{X} - 1.5}{0.20/\sqrt{36}} > 2.326 \Rightarrow \overline{X} - 1.5 > 0.0775$$

$$\Rightarrow \overline{X} > 1.5775$$

• Now, suppose μ is actually 1.6 (implying that H_0 is false). Let's calculate the power of our test if $\mu = 1.6$:

$$P(\bar{X} > 1.5775 | \mu = 1.6) = P(\frac{\bar{X} - 1.6}{0.20/\sqrt{36}} > \frac{1.5775 - 1.6}{0.2/\sqrt{36}})$$

$$= P(\bar{Z} > -0.68)$$

This is just a normal probability problem!

$$P(Z > -0.68) = .7517$$

• What if the true mean were 1.65?

Verify:
$$P(X > 1.5775 | \mu = 1.65)$$

= $P(Z > -2.18) = .9854$

• The farther the true mean is into the "alternative -2.18 region," the more likely we are to correctly reject H_0 .

Example 2: Testing H₀:
$$p = 0.9$$
 vs. H_a: $p < 0.9$ at $\alpha = 0.01$ using a sample of size 225.

Reject Ho if
$$Z = \frac{\hat{p} - 0.9}{\sqrt{(0.9)(0.1)}} < -2.326$$

$$\Rightarrow$$
 if $\hat{p} - 0.9 < -0.0465$
 \Rightarrow if $\hat{p} < 0.8535$

Suppose the true p is 0.8. Then our power is:

$$P(\hat{p} < 0.8535 | p = 0.8)$$

$$= P(\hat{p} - 0.8 < 0.8535 - 0.8)$$

$$= \frac{0.8535 - 0.8}{\sqrt{(0.8)(0.2)}}$$

$$= P(Z < 2.01)$$

 $= (.9778)$

STAT 515 -- Chapter 9: Two-Sample Problems

Paired Differences (Section 9.3)

Examples of Paired Differences studies:

• Similar subjects are paired off and one of two treatments is given to each subject in the pair.

or

• We could have two observations on the same subject.

The key: With paired data, the pairings cannot be switched around without affecting the analysis.

We typically wish to perform inference about the mean of the differences, denoted μ_D .

Example 1: Six students are given two tests, one after being fed, and one on an empty stomach. Is there evidence that students perform better on a full stomach? (Assume normality of data, and use $\alpha = .05$.)

	Student			differences			
Scores	1	2	3	4	5	6	
X_1 (with food)	74	71	82	77	72	81	
X_2 (without food)	68	71	86	70	67	80	

 $MD = M_1 - M_2$

Calculate differences: $D = X_1 - X_2$

D: 6, 0, -4, 7, 5, 1

$$H_0: M_D = 0$$
 vs. $H_a: M_D > 0$
 $\overline{D} = 2.5$, $S_D = 4.231$
 $t = \frac{\overline{D} - 0}{S_D/M_D} = \frac{2.5 - 0}{4.231/\sqrt{6}} = 1.447$

Rejection region: $t > t_{.05}$ $(n_D-1=5)$ (From t-table) t > 2.015

Since 1.447 \$ 2.015, we fail to reject Ho, We cannot conclude the students perform better on a full stomach. Example 2: Find a 98% CI for the mean difference in

Example 2: Find a 98% CI for the mean difference in arm strength for right-handed people (measured by the number of seconds a certain weight can be held extended).

		Pe	erson				
	1	2	3	4	5	6	7
X_1 (Right)	26	35	17	47	22	16	32
X_2 (Left)	20	31	10	38	23	16	29
D:	6	4	7	9	-1	0	3
5 X1-X2		·	'	,	,		

Assume the population of differences is normally distributed. $\overline{D} = 4.0 \qquad S_D = 3.65$ $98\% \quad CI \quad \text{for} \quad M_D:$ $\overline{D} \pm t_{\chi_2} \left(\frac{S_D}{V_{N_D}} \right) \qquad |-\alpha = .98$ $\alpha = .02$ $\gamma_2 = .01$ $4.0 \pm (3.143) \left(\frac{3.65}{V_7} \right) \qquad \pm 3.143$ $\Rightarrow \left(-0.336, 8.336 \right)$

Interpretation: With 98% confidence, the mean rightarm strength is between 0.336 seconds <u>less</u> and 8.336 seconds <u>greater</u> than the mean left-arm strength. (We are 98% confident the mean difference is between -0.336 and 8.336 seconds.)

Note: With paired data, the two-sample problem really reduces to a one-sample problem on <u>the sample of differences</u>.

Two Independent Samples (Section 9.2)

Sometimes there's no natural pairing between samples.

Example 1: Collect sample of males and sample of females and ask their opinions on whether capital punishment should be legal.

Example 2: Collect sample of iron pans and sample of copper pans and measure their resiliency at high temperatures.

No attempt made to pair subjects – we have two <u>independent</u> samples.

We could rearrange the order of the data and it wouldn't affect the analysis at all.

Iron	Copper
_	