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e Each music type appears once on each day and once
at each time of day.
o Testing for a significant effect of music type on mean
productivity:
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%here is a significant difference in mean productivity =0

among the five music types.

e Note: There is also a significant row effect (time of
day) and a significant column effect (day of week).



e Specifically, which music types are significantly
different?

e Using Tukey’s procedure, we see:
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Summary:
e Main advantage of a Latin Square design:

Efficiency — can perform useful tests with relatively few
experimental units.

e Main disadvantage: cannot test for any interaction.



Other Linear Models

Recall: One-way ANOVA model equation:

Y, =pu+t1,+¢
SLR model equation:

Yi :/B0+ﬁ]Xi+g,'

® These seem quite different and are used in different
data analysis situations.

e But these and other models can be unified. They are
each examples of the general linear model.

Dummy Variables

® The one-way ANOVA model may be represented as a
regression model by using dummy variables.

Dummy variables (indicator variables): Take only the

values 0 and 1 (sometimes -1 in certain contexts).
e One-way ANOVA model (above) is equivalent to:

Y=pX,+7, X+, X, +---+7X, +¢

where we define these dummy variables:
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Example: Suppose we have a one-way analysis with two
observations from level 1, two observations from level 2,
and three observations from level 3. The X matrix of
the “regression” would look like:
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® The Y-vector of response values and the vector of
parameter estimates would be:
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Problem: It turns out that X&"X is not invertible in
this case.

® There are =3 non-redundant equations and 7 + 1= 4
unknown parameters here.

® We fix this by adding one extra restriction to the
parameters.

e Most common (we used this before): Force 2.7 =0
=l

by defining t =-11 - ... - Te1.

e Using this approach, we need 7 — 1 dummy variables
to represent ¢ levels.

e If an observation comes from the last level, it gets a
value of —1 for all dummy variables X}, X3, ..., X¢.1.

X matrix from previous data set using this approach:
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