A 5×5 Latin Square is:

				Day	-	
		M	Tu	W	Th	F
Time	9-10	А	В	C	D	E
	10-11	В	C	D	E	A
	11-12	C	D	E	A	B
	1-2	D	E	Α	В	C
	2-3	E	A	B	C	D

- Each music type appears once on each day and once at each time of day.
- Testing for a significant effect of music type on mean productivity:

$$\mathbf{F^*} = \frac{MS(Trt)}{MSE} = \frac{14.079}{1.147} = 12.27 \quad {\text{(P-value)}}{\text{=.0003}}$$

Note $F^* > F_{.05}, 4, 12 = 3.26$ and $P_{-value} < .05 \implies \text{Reject Hoiall T}_k$ • There is a significant difference in mean productivity = 0 among the five music types.

• Note: There is also a significant row effect (time of day) and a significant column effect (day of week).

- Specifically, which music types are significantly different?
- Using Tukey's procedure, we see:

Tukey results:

C significantly different from A and B Significantly different from A.

Summary:

- Main advantage of a Latin Square design: <u>Efficiency</u> – can perform useful tests with relatively few experimental units.
- Main disadvantage: cannot test for any interaction.

Other Linear Models

Recall: One-way ANOVA model equation:

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

SLR model equation:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- These seem quite different and are used in different data analysis situations.
- But these and other models can be unified. They are each examples of the general linear model.

Dummy Variables

• The one-way ANOVA model may be represented as a regression model by using dummy variables.

<u>Dummy variables (indicator variables)</u>: Take only the values 0 and 1 (sometimes -1 in certain contexts).

• One-way ANOVA model (above) is equivalent to:

$$Y = \mu X_0 + \tau_1 X_1 + \tau_2 X_2 + \dots + \tau_t X_t + \varepsilon$$

where we define these dummy variables:

$$X_0 = 1$$
 for all observations $X_1 = \begin{cases} 1 & \text{for observations from group 1} \\ 0 & \text{otherwise} \end{cases}$
 $X_2 = \begin{cases} 1 & \text{for observations from group 2} \\ 0 & \text{otherwise} \end{cases}$
 $X_t = \begin{cases} 1 & \text{for observations from group t} \\ 0 & \text{otherwise} \end{cases}$
 $X_t = \begin{cases} 1 & \text{for observations from group t} \\ 0 & \text{otherwise} \end{cases}$
Example: Suppose we have a one-way analysis with two

observations from level 1, two observations from level 2, and three observations from level 3. The X matrix of

the "regression" would look like:

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

L7 rows, 4 columns (for Xo, X1, X2, X3)

• The Y-vector of response values and the vector of parameter estimates would be:

$$Y = \begin{cases} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \\ Y_{31} \\ Y_{32} \\ Y_{33} \end{cases}$$
vector of $\hat{\tau}_{1}$

$$\hat{\tau}_{1}$$

$$\hat{\tau}_{2}$$
estimates $\hat{\tau}_{2}$

$$\hat{\tau}_{3}$$

$$\hat{\tau}_{3}$$

Problem: It turns out that X X is not invertible in this case.

- There are t = 3 non-redundant equations and t + 1 = 4unknown parameters here.
- We fix this by adding one extra restriction to the parameters.
- Most common (we used this before): Force $\sum_{i=1}^{\infty} \tau_i = 0$ by defining $\tau_t = -\tau_1 - \dots - \tau_{t-1}$.
- Using this approach, we need t-1 dummy variables to represent t levels.
- If an observation comes from the <u>last</u> level, it gets a value of -1 for <u>all</u> dummy variables $X_1, X_2, ..., X_{t-1}$.

X matrix from previous data set using this approach:

A matrix from previous data set using this approach:

$$X_0 \quad X_1 \quad X_2 \qquad \qquad 7 \quad \text{rows}, \quad 3 \quad \text{columns}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & 0
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$

$$\begin{cases}
1 & 1 & 0 \\
1 & 1 & -1
\end{cases}$$
Now $\frac{1}{3} = -\frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1$

Again, this vector of parameter estimates is obtained by $(X^TX)^{-1}(X^TY)$