Chapter 5: Models for Nonstationary Time Series

» Recall that any time series that is a stationary process has a
constant mean function.

» So a process that has a mean function that varies over time
must be nonstationary.

» For example, we have seen that {Y;} is nonstationary if
Ye= e + X,

where p; is a nonconstant mean function and X; is a
stationary time series with mean zero.

» Sometimes pi; represents some deterministic trend.

> In other cases, time series data could exhibit nonstationarity,
but there is no particular trend model that we believe holds
(see R example for oil data).
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AR with |¢| > 1
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Consider a model of the form Y; = ¢Y;:_1 + e;.

When |¢] > 1, we get an “explosive” (exponential growth)
model in which the weights on past disturbance terms blow up
(rather than dying out) as we go further into the past.

v

v

See the R plot for a simulated example of such a series.

v

In such series, var(Y;) tends to blow up as time increases, and
for large t, corr(Yy, Yi—k) =~ 1.
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Stationarity through Differencing

If ® =1, then we get Y; = Y;_1 + e, a nonstationary model

which we can rewrite through differencing as VY;: = e;, where
VY:=Y:— Y1

We have seen before that differencing (or the related approach
of detrending) can convert nonstationary series into processes
that can be modeled as stationary.

In other situations, the second-difference model, in which we
focus on

VY =(Ye— Y1) = (Yee1 — Yee2) = Ye — 2Yeo1 + Yioo,
Is stationary.

This leads us to a general type of model in which the d-th
difference is stationary.
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The ARIMA Model

> A time series {Y;} is an autoregressive integrated moving
average model if the d-th difference, denoted

Wt - Vd Yt

is a stationary ARMA model.

» Specifically, if {W;} is ARMA(p, q), then {Y;} is
ARIMA(p, d, q).

» Often we consider d =1 (first differences) or d = 2 (second
differences).

» Consider the ARIMA(p, 1, q) model, letting Wy = Y; — Yi_1:

Wi = ot Wi1 + ooWe o+ -+ ¢pWip + 6 — O1e4-1—
92€t_2 — s — qut_q
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More on the ARIMA(p, 1, q) Model

» The characteristic equation of this model can be shown to
have one solution that is exactly 1 (hence the ARIMA model
is nonstationary).

» The remaining solutions are the solutions of the characteristic
equation of the stationary process VY;.

» For the ARIMA(p, 1, q) model, we can write Y; as

t
Ye= > W,

j=—m

where t = —m is some time earlier in the process than t =1,
when we first observed the time series.
» For the ARIMA(p, 2, q) model, we can write Y; as

t+m

Ye= ) (j+1)We

Jj=0
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Special Cases of ARIMA Models

> If the ARIMA process has no autoregressive terms, it becomes
an integrated moving average process, denoted IMA(d, q).

» If the ARIMA process has no moving average terms, it
becomes an autoregressive integrated process, denoted
ARI(p, d).

» The simplest IMA process is the IMA(1, 1) process:
Yi=VYi1+ e —Oerq

» Since W; = Y: — Yi_1 = e; — Oer_1 here, we have, using the
summation formula on the previous slide:

Ye=e+(1—-0)er1+(1—0)ero+---+(1—0)e_m—0Oe_m_1
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Properties of the IMA(1,1) Process

> Here, the weights on the e;'s do not die out as we go back in
time.

> Y} is approximately a bunch of equally weighted white noise
terms, plus a couple of white noise terms with different
weights.

» The sizes of these weights depend on 6.

» It can be shown that var(Y;) = [1 + 6% + (1 — 0)%(t + m)]o2.

1—-0—602+(1—0)%(t+m—k)
[var(Y:)var(Y:_k)]Y/2

which is near 1 for large m and small-to-moderate k.

» These imply that (1) as time goes on, var(Y:) gets larger and
larger.

> And (2), the correlation between values of the process will be
strongly positive for small lags (k =1,2,...) and even
moderately sized lags.
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The IMA(2,2) Process

In the IMA(2,2) process,

v

2
VoYt = e — 01801 — boer 2

> Again, if we express Y; as a linear combination of white noise
terms, the weights on the e;'s do not die out as we go back in
time.

» Again, var(Y;:) gets larger as t increases.

» And again, the correlation between values of the process will
be strongly positive for small lags (k =1,2,...) and even
moderately sized lags.

» See R plots for examples of graphs of simulated processes.
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Constant Terms in ARIMA Models

> In the ARIMA(p, d, q) process, VY, = W, is a stationary
ARMA(p, q) process, which we assume to have mean zero.

» We can alter this, if necessary, to allow W; to have a nonzero
mean .
» One approach is to replace W; everywhere with W; — u:

We — = d1(Wee1 — ) + po(Weo — 1) + - +
Gp(Wi—p — 1) + e —Or1e_1 — et — -+ — Oger_q
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More on Constant Terms in ARIMA Models

» Another approach is to add a constant term 6y into the model
equation:

Wi =00+ o1 We1 + poWe o+ -+
ppWip+er —Or1er 1 —bOrer 2 — - —0ger_q

» If E(W;) = p for all t, then taking expected values of both
sides of the above equation:

p==0 +(p1+ d2+ -+ Pp)p.

> Clearly, we can write y in terms of 6g, or g in terms of p, so
either approach is equivalent.
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Still More on Constant Terms in ARIMA Models

» As an example, consider the IMA(1,1) process with a
constant term:

» We could express this as Yy = Yi_1 + 0y + e; — Oer_1, or as
Wi =00+ e —Oer_1.

» Then as a linear combination of white noise terms:

Yt:et+(1—0)et_1+(1—9)et_2+"’+
(1 — 0)6_," —fOe_m_1 + (t —-m— 1)(90

» This has added a deterministic linear time trend (with slope
6o) to the process.

» So over time the trend of the process would be expected to
increase (or decrease) approximately linearly, depending on
the sign of 6.

» To represent some general polynomial trend (not necessarily
linear), we could consider Y; = Y + pt, where p; is some
polynomial in t and Y; is ARIMA(p, d,q) with E(Y;) =

Hitchcock STAT 520: Forecasting and Time Series



Other Transformations

» Differencing is not the only transformation that can be used
to achieve stationarity.

> In many real time series, the variability of Y; appears larger
for later values of t.

» Suppose Y; > 0 for all t, E(Y;) = e, and (/var(Y:) = uo.

» Then taking a Taylor series approximation of log(Y;) and
taking expected value and variance of that,

E[log(Y?:)] ~ log(it) and var[log(Y:)] = 0.

» So if the standard deviation of the series is increasing
proportionally with the mean of the series, then taking
(natural) logarithms of the series values will yield a process
with constant variance.

> Also, if Y; is changing exponentially, then the logged series
will change linearly.

> So the series of the first differences of the logged data should
look stationary.
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Percentage Changes and Logarithms

» This provides a natural form of transformation to use when
the time series Y; shows that the percentage change from one
time period to the next is stable.

» In that case, taking the natural log and then taking first
differences should produce a series V[log(Y;)] that is
approximately stationary.

» See the examples of the electricity data (R plots of
untransformed and transformed data), as well as the oil price
data we examined previously.
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Box-Cox Power Transformations

> A flexible family of transformations was given by Box and Cox:

xN—1

for A\ #0
log(x) for A =10

g(x) =

v

A variety of different values of A could be tried on a data set,

and the “best” choice used.

» Note that A = 1/2 corresponds to a square root
transformation.

» A\ = —1 corresponds to a reciprocal transformation.

» The Box-Cox transformation assumes the data values are all
positive. If not, some constant could initially be added to all
data values to make them all positive.

> A grid of A values can easily be tried in R, and the A that
maximizes a normal log-likelihood criterion could be selected.

> See R example with the electricity data.
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