
Chapter 5: Models for Nonstationary Time Series

I Recall that any time series that is a stationary process has a
constant mean function.

I So a process that has a mean function that varies over time
must be nonstationary.

I For example, we have seen that {Yt} is nonstationary if

Yt = µt + Xt ,

where µt is a nonconstant mean function and Xt is a
stationary time series with mean zero.

I Sometimes µt represents some deterministic trend.

I In other cases, time series data could exhibit nonstationarity,
but there is no particular trend model that we believe holds
(see R example for oil data).
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AR with |φ| > 1

I Consider a model of the form Yt = φYt−1 + et .

I When |φ| > 1, we get an “explosive” (exponential growth)
model in which the weights on past disturbance terms blow up
(rather than dying out) as we go further into the past.

I See the R plot for a simulated example of such a series.

I In such series, var(Yt) tends to blow up as time increases, and
for large t, corr(Yt ,Yt−k) ≈ 1.
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Stationarity through Differencing

I If φ = 1, then we get Yt = Yt−1 + et , a nonstationary model
which we can rewrite through differencing as ∇Yt = et , where
∇Yt = Yt − Yt−1.

I We have seen before that differencing (or the related approach
of detrending) can convert nonstationary series into processes
that can be modeled as stationary.

I In other situations, the second-difference model, in which we
focus on
∇2Yt = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2,
is stationary.

I This leads us to a general type of model in which the d-th
difference is stationary.
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The ARIMA Model

I A time series {Yt} is an autoregressive integrated moving
average model if the d-th difference, denoted

Wt = ∇dYt

is a stationary ARMA model.

I Specifically, if {Wt} is ARMA(p, q), then {Yt} is
ARIMA(p, d , q).

I Often we consider d = 1 (first differences) or d = 2 (second
differences).

I Consider the ARIMA(p, 1, q) model, letting Wt = Yt − Yt−1:

Wt = φ1Wt−1 + φ2Wt−2 + · · ·+ φpWt−p + et − θ1et−1−
θ2et−2 − · · · − θqet−q
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More on the ARIMA(p, 1, q) Model

I The characteristic equation of this model can be shown to
have one solution that is exactly 1 (hence the ARIMA model
is nonstationary).

I The remaining solutions are the solutions of the characteristic
equation of the stationary process ∇Yt .

I For the ARIMA(p, 1, q) model, we can write Yt as

Yt =
t∑

j=−m

Wj

where t = −m is some time earlier in the process than t = 1,
when we first observed the time series.

I For the ARIMA(p, 2, q) model, we can write Yt as

Yt =
t+m∑
j=0

(j + 1)Wt−j
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Special Cases of ARIMA Models

I If the ARIMA process has no autoregressive terms, it becomes
an integrated moving average process, denoted IMA(d , q).

I If the ARIMA process has no moving average terms, it
becomes an autoregressive integrated process, denoted
ARI (p, d).

I The simplest IMA process is the IMA(1, 1) process:

Yt = Yt−1 + et − θet−1

I Since Wt = Yt − Yt−1 = et − θet−1 here, we have, using the
summation formula on the previous slide:

Yt = et +(1−θ)et−1+(1−θ)et−2+ · · ·+(1−θ)e−m−θe−m−1
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Properties of the IMA(1, 1) Process

I Here, the weights on the et ’s do not die out as we go back in
time.

I Yt is approximately a bunch of equally weighted white noise
terms, plus a couple of white noise terms with different
weights.

I The sizes of these weights depend on θ.
I It can be shown that var(Yt) = [1 + θ2 + (1− θ)2(t + m)]σ2e .

corr(Yt ,Yt−k) =
1− θ − θ2 + (1− θ)2(t + m − k)

[var(Yt)var(Yt−k)]1/2

which is near 1 for large m and small-to-moderate k .
I These imply that (1) as time goes on, var(Yt) gets larger and

larger.
I And (2), the correlation between values of the process will be

strongly positive for small lags (k = 1, 2, . . .) and even
moderately sized lags.
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The IMA(2, 2) Process

I In the IMA(2, 2) process,

∇2Yt = et − θ1et−1 − θ2et−2

I Again, if we express Yt as a linear combination of white noise
terms, the weights on the et ’s do not die out as we go back in
time.

I Again, var(Yt) gets larger as t increases.

I And again, the correlation between values of the process will
be strongly positive for small lags (k = 1, 2, . . .) and even
moderately sized lags.

I See R plots for examples of graphs of simulated processes.
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Constant Terms in ARIMA Models

I In the ARIMA(p, d , q) process, ∇dYt = Wt is a stationary
ARMA(p, q) process, which we assume to have mean zero.

I We can alter this, if necessary, to allow Wt to have a nonzero
mean µ.

I One approach is to replace Wt everywhere with Wt − µ:

Wt − µ = φ1(Wt−1 − µ) + φ2(Wt−2 − µ) + · · ·+
φp(Wt−p − µ) + et − θ1et−1 − θ2et−2 − · · · − θqet−q
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More on Constant Terms in ARIMA Models

I Another approach is to add a constant term θ0 into the model
equation:

Wt = θ0 + φ1Wt−1 + φ2Wt−2 + · · ·+
φpWt−p + et − θ1et−1 − θ2et−2 − · · · − θqet−q

I If E (Wt) = µ for all t, then taking expected values of both
sides of the above equation:

µ = θ0 + (φ1 + φ2 + · · ·+ φp)µ.

I Clearly, we can write µ in terms of θ0, or θ0 in terms of µ, so
either approach is equivalent.
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Still More on Constant Terms in ARIMA Models

I As an example, consider the IMA(1, 1) process with a
constant term:

I We could express this as Yt = Yt−1 + θ0 + et − θet−1, or as
Wt = θ0 + et − θet−1.

I Then as a linear combination of white noise terms:

Yt = et + (1− θ)et−1 + (1− θ)et−2 + · · ·+
(1− θ)e−m − θe−m−1 + (t −m − 1)θ0

I This has added a deterministic linear time trend (with slope
θ0) to the process.

I So over time the trend of the process would be expected to
increase (or decrease) approximately linearly, depending on
the sign of θ0.

I To represent some general polynomial trend (not necessarily
linear), we could consider Yt = Y

′
t + µt , where µt is some

polynomial in t and Y
′
t is ARIMA(p, d , q) with E (Y

′
t ) = 0.
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Other Transformations

I Differencing is not the only transformation that can be used
to achieve stationarity.

I In many real time series, the variability of Yt appears larger
for later values of t.

I Suppose Yt > 0 for all t, E (Yt) = µt , and
√
var(Yt) = µtσ.

I Then taking a Taylor series approximation of log(Yt) and
taking expected value and variance of that,

E [log(Yt)] ≈ log(µt) and var [log(Yt)] ≈ σ2.
I So if the standard deviation of the series is increasing

proportionally with the mean of the series, then taking
(natural) logarithms of the series values will yield a process
with constant variance.

I Also, if Yt is changing exponentially, then the logged series
will change linearly.

I So the series of the first differences of the logged data should
look stationary.
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Percentage Changes and Logarithms

I This provides a natural form of transformation to use when
the time series Yt shows that the percentage change from one
time period to the next is stable.

I In that case, taking the natural log and then taking first
differences should produce a series ∇[log(Yt)] that is
approximately stationary.

I See the examples of the electricity data (R plots of
untransformed and transformed data), as well as the oil price
data we examined previously.
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Box-Cox Power Transformations

I A flexible family of transformations was given by Box and Cox:

g(x) =


xλ − 1

λ
for λ 6= 0

log(x) for λ = 0

I A variety of different values of λ could be tried on a data set,
and the “best” choice used.

I Note that λ = 1/2 corresponds to a square root
transformation.

I λ = −1 corresponds to a reciprocal transformation.
I The Box-Cox transformation assumes the data values are all

positive. If not, some constant could initially be added to all
data values to make them all positive.

I A grid of λ values can easily be tried in R, and the λ that
maximizes a normal log-likelihood criterion could be selected.

I See R example with the electricity data.
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