
Chapter 7: Parameter Estimation in Time Series Models

I In Chapter 6, we learned about how to specify our time series
model (decide which specific model to use).

I The general model we have considered is the ARIMA(p, d , q)
model.

I The simpler models like AR, MA, and ARMA are special cases
of this general ARIMA(p, d , q) model.

I Now assume we have chosen appropriate values of p, d , and q
(possibly based on evidence from the ACF, PACF, and/or
EACF plots).

I Assume that our observed time series data Y1, . . . ,Yn follow a
stationary ARMA(p, q) model.

I In the case of nonstationary original data, we can assume that
taking d differences has produced differenced data that
displays stationarity.

I We now must estimate the unknown parameters in that
stationary ARMA(p, q) model.
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Method of Moments Estimation

I One of the easiest methods of parameter estimation is the
method of moments (MOM).

I The basic idea is to find expressions for the sample moments
and for the population moments and equate them:

1

n

n∑
i=1

X r
i = E (X r )

I The E (X r ) expression will be a function of one or more
unknown parameters.

I If there are, say, 2 unknown parameters, we would set up
MOM equations for r = 1, 2, and solve these 2 equations
simultaneously for the two unknown parameters.

I In the simplest case, if there is only 1 unknown parameter to
estimate, then we equate the sample mean to the true mean
of the process and solve for the unknown parameter.
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MOM with AR models

I First, we consider autoregressive models.

I In the simplest case, the AR(1) model, given by
Yt = φYt−1 + et , the true lag-1 autocorrelation ρ1 = φ.

I For this type of model, a method-of-moments estimator would
simply equate the true lag-1 autocorrelation to the sample
lag-1 autocorrelation r1.

I So our MOM estimator of the unknown parameter φ would be
φ̂ = r1.
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MOM with an AR(2) model

I In the AR(2) model, we have unknown parameters φ1 and φ2.

I From the Yule-Walker equations,

ρ1 = φ1 + ρ1φ2 and ρ2 = ρ1φ1 + φ2

I In the method of moments, we will replace the true lag-1 and
lag-2 autocorrelations, ρ1 and ρ2, by the sample
autocorrelations r1 and r2, respectively.
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MOM with an AR(2) model, continued

I That gives the equations

r1 = φ1 + r1φ2 and r2 = r1φ1 + φ2

which are then solved for φ1 and φ2 to obtain

φ̂1 =
r1(1− r2)

1− r21
and φ̂2 =

r2 − r21
1− r21

I The general AR(p) model is estimated in a similar way, with
the Yule-Walker equations being used to obtain the
Yule-Walker estimates φ̂1, φ̂2, . . . , φ̂p.
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MOM with MA Models

I We run into problems when trying to using the method of
moments to estimate the parameters of moving average
models.

I Consider the simple MA(1) model, Yt = et − θet−1.

I The true lag-1 autocorrelation in this model is
ρ1 = −θ/(1 + θ2).

I If we equate ρ1 to r1, we get a quadratic equation in θ.

I If |r1| < 0.5, then only one of the two real solutions satisfies
the invertibility condition |θ| < 1.

I That solution is θ̂ =

(
−1 +

√
1− 4r21

)
/(2r1).

I But if |r1| = 0.5, no invertible solution exists, and if |r1| > 0.5,
then no real solution at all exists, and the method of moments
fails to give any estimator of θ.
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More MOM Problems with MA Models

I With higher-order MA(q) models, the set of equations for
estimating θ1, . . . , θq is highly nonlinear and could only be
solved numerically.

I There would be many solutions, only one of which is invertible.

I In any case, for MA(q) models, the method of moments
usually produces poor estimates, so it is not recommended to
use MOM to estimate MA models.
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MOM Estimation of Mixed ARMA Models

I Consider only the simplest mixed model, the ARMA(1, 1)
model.

I Since ρ2/ρ1 = φ, a MOM estimator of φ is φ̂ = r2/r1.

I Then the equation

r1 =
(1− θφ̂)(φ̂− θ)

1− 2θφ̂+ θ2

can be used to solve for an estimate of θ.

I This is a quadratic equation in θ, and so we again keep only
the invertible solution (if any exist) as our θ̂.
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MOM Estimation of the Noise Variance

I We still must estimate the variance σ2e of our error
component.

I For any model, we first estimate the variance of the time
series process itself, γ0 = var(Yt), by the sample variance

s2 =
1

n − 1

n∑
i=1

(Yt − Ȳ )2

I Then we can take advantage of known relationships among
the parameters in our specified model to obtain a formula for
σ̂2e .
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Formulas for MOM Noise Variance Estimators in Common
Models

I For AR(p) models, σ̂2e = (1− φ̂1r1 − φ̂2r2 − · · · − φ̂prp)s2.

I For the AR(1) model, this reduces to σ̂2e = (1− r21 )s2.

I For MA(q) models,

σ̂2e =
s2

1 + θ̂21 + θ̂22 + · · ·+ θ̂2q
.

I For ARMA(1, 1) models,

σ̂2e =
1− φ̂2

1− 2φ̂θ̂ + θ̂2
s2.
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MOM Estimation in Some Simulated Time Series

I The course web page has R code to estimate the parameters
in several simulated AR, MA, and ARMA models.

I The estimates of the AR parameters are good, but the
estimates of the MA parameters are poor.

I In general, MOM estimators for models with MA terms are
inefficient.
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MOM Estimation in Some Real Time Series (Hare data)

I On the course web page, we see some estimation of
parameters for real time series data.

I For the Canadian hare data, we employ a square-root
transformation and select an AR(2) model:

(
√

Yt − µ) = φ1(
√

Yt−1 − µ) + φ2(
√

Yt−2 − µ) + et

I Note that because the mean of the process is not zero, we
initially subtract off µ = E (

√
Yt) throughout.

I Using the method of moments, we estimate the unknown
parameters µ, φ1, and φ2 (see R example).

I The final estimated model is

(
√
Yt−5.82) = 1.1178(

√
Yt−1−5.82)−0.519(

√
Yt−2−5.82)+et

with estimated noise variance 1.97.
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MOM Estimation in Real Time Series (Oil price data)

I For the Oil price data, we select an MA(1) model for the
differences of the logged oil prices:

(∇ logYt − µ) = et − θet−1

I We again subtract off µ = E (∇ logYt) throughout to account
for the fact that the real data may not have mean zero.

I Using the method of moments, we estimate the unknown
parameters µ and θ (see R example).

I The final estimated model is

(∇ logYt − 0.004) = et + 0.222et−1

with estimated noise variance 0.00686.
I Based on the standard error of the estimate of µ (see formula

on page 28), it could be argued that the value of 0.004 is not
significantly different from 0, so we could drop this 0.004 from
the final model.
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Least Squares Estimation

I Since method-of-moments performs poorly for some models,
we examine another method of parameter estimation: Least
Squares.

I We first consider autoregressive models.

I We assume our time series is stationary (or that the time
series has been transformed so that the transformed data can
be modeled as stationary).

I To account for the possibility that the mean is nonzero, we
subtract µ from each observation and treat µ as a parameter
to be estimated.
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LS Estimation for the AR(1) Model

I Consider the mean-centered AR(1) model:

Yt − µ = φ(Yt−1 − µ) + et

I The least squares method seeks the parameter values that
minimize the sum of squared differences:

Sc(φ, µ) =
n∑

t=2

[(Yt − µ)− φ(Yt−1 − µ)]2

I This criterion is called the conditional sum-of-squares function
(CSS).

Hitchcock STAT 520: Forecasting and Time Series



LS Estimation of µ for the AR(1) Model

I Taking the derivative of CSS with respect to µ, setting equal
to 0 and solving for µ, we obtain the LS estimator of µ:

µ̂ =
1

(n − 1)(1− φ)

[ n∑
t=2

Yt − φ
n∑

t=2

Yt−1

]
I For large n, this µ̂ ≈ Ȳ , regardless of the value of φ.
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LS Estimation of φ for the AR(1) Model

I Taking the derivative of CSS with respect to φ, setting equal
to 0 and solving for φ, we obtain the LS estimator of φ:

φ̂ =

∑n
t=2(Yt − Ȳ )(Yt−1 − Ȳ )∑n

t=2(Yt−1 − Ȳ )2

I This estimator is almost identical to r1: it’s just missing one
term in the denominator, (Yn − Ȳ )2.

I So, especially for large n, the LS and MOM estimators are
nearly identical in the AR(1) model.

I In the general AR(p) model, the LS estimators of µ and of
φ1, . . . , φp are approximately equal to the MOM estimators,
especially for large samples.
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LS Estimation for Moving Average Models

I Consider now the MA(1) model:

Yt = et − θet−1

I Recall that this can be written as

Yt = −θYt−1 − θ2Yt−2 − θ3Yt−3 − · · ·+ et .

I So a least squares estimator of θ can be obtained by finding
the value of θ that minimizes

Sc(θ) =
∑

[Yt + θYt−1 + θ2Yt−2 + θ3Yt−3 + · · · ]2

I But this is nonlinear in θ, and the infinite series causes
technical problems.
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LS Estimation for Moving Average Models

I Instead, we proceed by conditioning on one previous value of
et . Note that

et = Yt + θet−1

I If we set e0 = 0, then we have the set of recursive equations
e1 = Y1, e2 = Y2 + θe1, . . . , en = Yn + θen−1.

I Since we know Y1,Y2, . . . ,Yn (these are the observed data
values) and can calculate the e1, e2, . . . , en recursively, the
only unknown quantity here is θ.

I We can do a numerical search for the value of θ (within the
invertible range between −1 and 1) that minimizes

∑
(et)

2,
conditional on e0 = 0.

I A similar approach works for higher-order MA(q) models,
except that we assume e0 = e−1 = · · · = e−q = 0 and the
numerical search is multidimensional, since we are estimating
θ1, . . . , θq.
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LS Estimation for ARMA Models

I With the ARMA(1, 1) model:

Yt = φYt−1 + et − θet−1,

we note that
et = Yt − φYt−1 + θet−1

and minimize Sc(φ, θ) =
∑n

t=2 e
2
t ; note that the sum starts at

t = 2 to avoid having to choose an “initial” value Y0.

I With the general ARMA(p, q) model, the procedure is similar,
except that we assume ep = ep−1 = · · · = ep+1−q = 0, and we
estimate φ1, . . . , φp, θ1, . . . , θq.

I For large samples, when the parameter sets yield invertible
models, the initial values for ep, ep−1, . . . , ep+1−q have little
effect on the final parameter estimates.
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Maximum Likelihood Estimation

I On the other hand, for small to moderate sample sizes (and
for stochastic seasonal models), assuming
ep = ep−1 = · · · = ep+1−q = 0 can greatly affect the final
parameter estimates, which is undesirable.

I In those cases, rather than using least squares, it may be
advantageous to use maximum likelihood (ML) estimation.

I An advantage of ML estimation is that it uses all of the
information in the data (not just the first few moments as in
MOM).

I Also, many large-sample results are known about the sampling
distribution of ML estimators.

I A disadvantage of ML estimation is that we must assume the
form of the joint probability distribution of the time series
process.

Hitchcock STAT 520: Forecasting and Time Series



Maximum Likelihood in Time Series Models

I The likelihood function is the joint density function of the
data, but treated as a function of the unknown parameters,
given the observed data Y1, . . . ,Yn.

I For the models we have studied, the likelihood L is a function
of the φ’s, θ’s, µ, and σ2e , given the observed Y1, . . . ,Yn.

I The maximum likelihood estimates (MLEs) are the values of
the parameters that maximize this likelihood function, i.e.,
that are the “most likely” parameter values given the data we
actually observed.
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Maximum Likelihood in the AR(1) Model

I In the AR(1) model with an unknown but constant mean, the
parameters we must estimate are φ, µ, and σ2e .

I To perform ML estimation in the AR(1) model, we must
assume a distribution for our data.

I The typical assumption is that the {et} in the AR(1) model
are iid N(0, σ2e ) random variables.

I Under this assumption, the likelihood function (details are
given on page 159) is:

L(φ, µ, σ2e ) = (2πσ2e )−n/2(1− φ2)1/2 exp

[
− 1

2σ2e
S(φ, µ)

]
where
S(φ, µ) =

∑n
t=2[(Yt−µ)−φ(Yt−1−µ)]2 + (1−φ2)(Y1−µ)2.
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MLE’s in the AR(1) Model

I This S(φ, µ) is called the unconditional sum-of-squares
function.

I We must find estimates φ̂, µ̂, and σ̂2e that maximize the
likelihood function (in practice, we typically maximize the
log-likelihood function, which produces equivalent estimates).

I The estimator of the noise variance σ2e , in terms of the other
estimates, is

σ̂2e =
S(φ̂, µ̂)

n
.

I Note that dividing by n − 2 rather than n produces a less
biased estimator, but for large sample sizes, this makes little
practical difference.
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MLE’s in the AR(1) Model

I We still need to estimate φ and µ.

I Comparing the unconditional sum-of-squares function to the
conditional sum-of-squares function we saw earlier, note that
S(φ, µ) = Sc(φ, µ) + (1− φ2)(Y1 − µ)2, so for large sample
sizes, S(φ, µ) ≈ Sc(φ, µ).

I This implies that our ML estimates of φ and µ will be very
similar to the LS estimates, at least for large sample sizes.

I The likelihood function for general ARMA models is more
complicated, but ML estimates can usually be found in these
models.

I In practice, for AR models, MA models, or general ARMA or
ARIMA models, we can often find either the LS estimates or
the ML estimates easily using R.
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Properties of the Estimators

I Recall that LS estimators and ML estimators become
approximately equal for large samples.

I So the large-sample properties of LS estimators and ML
estimators are identical for basic ARMA-type models.

I For large n, these estimators are approximately unbiased and
normally distributed.

I Note: For AR models, MOM estimators have identical
large-sample properties as LS and ML estimators.

I But for models with MA terms, MOM estimators have poor
performance and should not be used!

I For some common models, variance and correlation results for
the estimators are given on page 161.
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Properties of the Estimators in AR(1) and MA(1) models

I For example, for the AR(1) model, var(φ̂) ≈ (1− φ2)/n, and
for the MA(1) model, var(θ̂) ≈ (1− θ2)/n.

I Clearly, the variance of the estimator decreases (i.e., the
precision improves) as n increases.

I For the AR(1) model, the variance of the estimator φ̂ will be
low when the true φ is near 1.

I For the MA(1) model, the variance of the estimator θ̂ will be
low when the true θ is near 1.
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Parameter Estimation with Some Simulated Time Series

I See the course web page for R examples for parameter
estimation for two different simulated AR(1) series, each with
n = 60, using the MOM, LS, and ML methods.

I See the course web page for R examples for parameter
estimation for a simulated AR(2) series, with n = 120, using
the MOM, LS, and ML methods.

I See the course web page for R examples for parameter
estimation for a simulated ARMA(1,1) series, with n = 100,
using the LS and ML methods (why not MOM here?).

I For these sample sizes, the various methods perform similarly
in terms of their accuracy of estimation.

I With smaller sample sizes, the methods may produce more
different results.
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Parameter Estimation with the Color Property Time Series

I For the color property time series, we had specified an AR(1)
model.

I The R examples show the estimation of φ using the MOM,
LS, and ML methods (note n = 35 here).

I From the ML estimate, the estimated AR(1) model would be

Yt = 0.57Yt−1 + et

I Since the mean of the color property series is clearly not zero,
it is better to estimate a mean-centered version of the model,
and using the arima function tells us that µ̂ = 74.33:

(Yt − 74.33) = 0.57(Yt−1 − 74.33) + et

where the noise variance is estimated to be 24.83.
I Since ρk = φk for an AR(1) process, we see that the

autocorrelations will be positive for any lag, but will die off as
the lag k increases.
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Parameter Estimation with the Hare Abundance Time
Series

I For the Canadian hare abundance data, recall that we will
take the square root of the original abundance values.

I In the previous MOM example, we modeled the data with an
AR(2) model, but here we choose an AR(3) model, which
may be more appropriate based on the PACF.

I The R examples show the estimation of φ1, φ2, φ3 and µ (as
well as σ2e ) using the MOM, LS, and ML methods (note
n = 31 here).

I The final estimated model (from the ML estimates) is:

(
√
Yt − 5.69) = 1.052(

√
Yt−1 − 5.69)− 0.229(

√
Yt−2 − 5.69)−

0.393(
√
Yt−3 − 5.69) + et

with estimated noise variance 1.066.
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Parameter Estimation with the Hare Abundance Time
Series (Continued)

I From the standard errors of the estimates, the lag-2
coefficient does not appear significantly different from zero.

I So we could optionally drop the lag-2 term and refit the AR
model with only the lag-1 and lag-3 terms.
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Parameter Estimation with the Oil Price Time Series

I Our earlier analysis specified an MA(1) model for the
differences of the logged oil prices.

I The R example shows the estimation of θ using several
methods.

I Again, the method of moments is not recommended for the
MA(1) model.
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Parameter Estimation with Other Time Series

I See the R examples on parameter estimation for several other
data sets:

I We estimate the parameters of an AR(2) model for the
recruitment data.

I We estimate the parameters of an MA(1) model for the
differenced logged varve data.

I Either an AR(1) model or an MA(2) model seems to fit the
differences of the logged GNP data well.
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Large-sample Inference about the Model Parameters

I When the model parameters are estimated by the ML method,
then the ML estimators are approximately normally distributed
when n is large.

I So we can use normal-based inference to get, say, confidence
intervals for the true values of the parameters.

I For example, it may be of interest to know whether 0 is a
plausible value of some parameter.

I For large samples, a (1−α)100% CI for a parameter takes the
form:

estimate ± (zα/2)(estimated standard error)

I For example, in an AR(1) model, a 95% CI for φ is:

φ̂± 1.96

√
(1− φ̂2)/n

I For example, in an MA(1) model, a 90% CI for θ is:

θ̂ ± 1.645

√
(1− θ̂2)/n
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Small-sample Inference about the Model Parameters

I The ML estimators are not necessarily approximately normally
distributed when n is small.

I So when n is small, we can use a more general approach,
bootstrap-based inference, to get confidence intervals for the
true values of the parameters.

I Section 7.6 gives details about bootstrap intervals.

I Some R examples give code for calculating 95% bootstrap CIs
for ARIMA-type model parameters using four different
methods; note that Method IV makes the fewest assumptions
about the error distribution.

I The bootstrap method also makes it possible to construct CIs
about relevant functions of the model parameters.
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