3) Suppose $\{e_t\}$ is a normal white noise process with mean zero and variance σ_e^2 . Let $\{Y_t\}$ be a process defined as:

$$Y_{t} = e_{t} + 0.2e_{t-1}$$
.

- a) Find the autocovariance function and autocorrelation function of Y_t .
- [Hint: Calculate $cov(Y_t, Y_{t-k})$ case-by-case for several values of k (i.e., for $k = 0, k = 1, k \ge 2$).] Show all your steps clearly.
- b) Is the time series $\{Y_t\}$ stationary? Explain your answer.
- 4) Apply a moving average filter to Y_t , where Y_t is the natural logarithm of the Johnson and Johnson earnings data (the original data are given in the jj object in the astsa package). Specifically, let

$$V_t = (Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3}) / 4$$
. The R code $v = filter(y, rep(1/4, 4), sides = 1)$

may be helpful in implementing this. Type help (filter) in R for more details about this R function. Plot Y_t as a line and overlay (superimpose) V_t as a dashed line, and provide this plot. Discuss whether the moving average filter captures the overall trend in the time series.

5) [Required for graduate students, extra credit for undergraduate students] Suppose $\{e_t\}$ is a normal white noise process with mean zero and variance σ_e^2 . Let $\{Y_t\}$ be a process defined as: $Y_t = e_t e_{t-1}$. Showing all your steps, find the mean function and the autocovariance function of Y_t . [Hint: Use facts about the expected value of the product of independent random variables.] Is the time series $\{Y_t\}$ stationary? Explain your answer.