
A Bayesian Approach to Model Selection

I In exploratory regression problems, we often must select which
subset of our potential predictor variables produces the “best
model.”

I A Bayesian may consider the possible models and compare
them based on their posterior probabilities.

I Note that if the value of coefficient βj is 0, then variable Xj is
not needed in the model.

I Let βj = zjbj for each j , where zj = 0 or 1 and bj ∈ (−∞,∞).

I Then our model is

Yi = z0b0+z1b1Xi1+z2b2Xi2+· · ·+zk−1bk−1Xi ,k−1+εi , i = 1, . . . , n

where any zj = 0 indicates that this predictor variable does
not belong in the model.



A Bayesian Approach to Model Selection

Example: Oxygen uptake example:
X1 = group, X2 = age, X3 = group × age:

z = (z0, z1, z2, z3) True E [Y |x,b, z]
(1,0,0,0) b0

(1,1,0,0) b0 + b1 group
(1,0,1,0) b0 + b2 age
(1,1,1,0) b0 + b1 group + b2 age
(1,1,1,1) b0 + b1 group + b2 age + b3 group× age



A Bayesian Approach to Model Selection

I For each possible value of the vector z, we calculate the
posterior probability for that model:

I For any particular z∗, say:

π(z∗|y,X) =
p(z∗)p(y|X, z∗)∑
z

p(z)p(y|X, z)

I This involves a prior p(·) on each possible model — a
noninformative approach would be to let all these prior
probabilities be equal.

I If there are a large number of potential predictors, we would
use a method called Gibbs sampling) (more on this later) to
search over the many models.



Example of Bayesian Model Selection

I Example in R with Oxygen Data Set

I We can consider all possible subsets of set of predictor
variables:

I We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms
appear):



The Posterior Predictive Distribution of the Data

I Suppose we have built our Bayesian regression model using
response data y and explanatory data matrix X.

I Suppose we consider future observations whose explanatory
variable values are in the matrix X∗.

I What is the marginal distribution of the corresponding future
response values y∗?

I This is the posterior predictive distribution

π(y∗|y,X∗,X).

I We will use this later as a tool for checking the fit of our
regression model.



The Posterior Predictive Distribution of the Data

I In our analysis with the noninformative priors, note that

π(y∗,β, σ2|y,X∗,X) = π(y∗|β, σ2,X∗)π(β, σ2|X, y)

I Then integrating out β and σ2, it can be shown that the
posterior predictive distribution of y∗ is multivariate-t with
(n − k) degrees of freedom so that

E (y∗) = X∗b̂ and

covariance matrix =
(n − k)σ̂2

n − k − 2
[I + X∗(X

′
X)−1X∗′

]

I Intuition: Our original data are multivariate normal, given the
model.

I Our future predictions are multivariate-t (reflects added
uncertainty about the model).


