A Bayesian Approach to Model Selection

» In exploratory regression problems, we often must select which
subset of our potential predictor variables produces the “best
model.”

» A Bayesian may consider the possible models and compare
them based on their posterior probabilities.

> Note that if the value of coefficient 3; is 0, then variable X; is
not needed in the model.

> Let 3 = z;b; for each j, where zj =0 or 1 and b; € (—o0, 00).

» Then our model is
Yi = 20bo+z1 b1 Xin+ 2202 Xio++ - -+ 2z _1 b1 Xj k—1+€;, i =1,...,n

where any z; = 0 indicates that this predictor variable does
not belong in the model.



A Bayesian Approach to Model Selection

Example: Oxygen uptake example:
X1 = group, Xo = age, X3 = group X age:

z = (z2,21,22,23) | True E[Y]x,b, 2]
(1,0,0,0) bo
(1,1,0,0) bg + b1 group
(1,0,1,0) by + by age
(1,1,1,0) bg + b1 group + by age
(1,1,1,1) bg + by group + by age + bs group X age




A Bayesian Approach to Model Selection

» For each possible value of the vector z, we calculate the
posterior probability for that model:

» For any particular z*, say:

p(z*)p(ylX,z")
;p(Z)p(yIX,Z)

7[-(2*|y7 X) =

» This involves a prior p(-) on each possible model — a
noninformative approach would be to let all these prior
probabilities be equal.

» If there are a large number of potential predictors, we would
use a method called Gibbs sampling) (more on this later) to
search over the many models.



Example of Bayesian Model Selection

» Example in R with Oxygen Data Set

» We can consider all possible subsets of set of predictor
variables:

» We can consider only certain subsets (here, we only consider
including the interaction term when both first-order terms

appear):



The Posterior Predictive Distribution of the Data

» Suppose we have built our Bayesian regression model using
response data y and explanatory data matrix X.

» Suppose we consider future observations whose explanatory
variable values are in the matrix X*.

» What is the marginal distribution of the corresponding future
response values y*?

» This is the posterior predictive distribution
T(y*y, X*, X).

» We will use this later as a tool for checking the fit of our
regression model.



The Posterior Predictive Distribution of the Data

» In our analysis with the noninformative priors, note that

» Then integrating out 3 and &2, it can be shown that the
posterior predictive distribution of y* is multivariate-t with
(n — k) degrees of freedom so that

E(y*) = X*b and
(n— k)62

4+ X*(X'X)"1x*
n_k_2[+ (X'X) ]

covariance matrix =
» Intuition: Our original data are multivariate normal, given the
model.
» Our future predictions are multivariate-t (reflects added
uncertainty about the model).



