Spike-and-Slab Priors for Linear Models

- In regression, the priors on the regression coefficients are crucial.
- Whether or not β_j = 0 defines whether X_j is "important" in the regression.
- For any j, a useful prior for β_j is:

Spike-and-Slab Priors for Linear Models

- ► Here: P(β_j = 0) = h_{0j} (= prior probability that X_j is not needed in the model)
- ► $P(\beta_j \neq 0) = 1 h_{0j} = h_{1j}(f_j (-f_j)) = 2f_j h_{1j}$ (where $[-f_j, f_j]$ contains all "reasonable" values for β_j)
- To include X_j in the model with certainty, set $h_{0j} = 0$.
- To reflect more doubt that X_j should be in the model, increase the ratio

$$\frac{h_{0j}}{h_{1j}} = \frac{h_{0j}}{(1-h_{0j})/2f_j} = 2f_j \frac{h_{0j}}{1-h_{0j}}$$

 Recently, "nonparametric priors" have become popular, typically involving a mixture of Dirichet processes.

CHAPTER 6(a) SLIDES BEGIN HERE

- The Monte Carlo method involves studying a distribution (e.g., a posterior) and its characteristics by generating many random observations having that distribution.
- ▶ If $\theta^{(1)}, \ldots, \theta^{(S)} \stackrel{\text{iid}}{\sim} \pi(\theta | \mathbf{x})$, then the empirical distribution of $\{\theta^{(1)}, \ldots, \theta^{(S)}\}$ approximates the posterior, when S is large.
- By the law of large numbers,

$$rac{1}{S}\sum_{s=1}^{S}g(heta^{(s)})
ightarrow E[g(heta)|\mathbf{x}]$$

as $S \to \infty$.

The Monte Carlo Method

So as
$$S \to \infty$$
:

$$\begin{split} \bar{\theta} &= \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)} \rightarrow \text{ posterior mean} \\ &\frac{1}{S-1} \sum_{s=1}^{S} (\theta^{(s)} - \bar{\theta})^2 \rightarrow \text{ posterior variance} \\ &\frac{\#\{\theta^{(s)} \leq c\}}{S} \rightarrow P[\theta \leq c | \mathbf{x}] \\ &\text{median}\{\theta^{(1)}, \dots, \theta^{(S)}\} \rightarrow \text{ posterior median} \end{split}$$

(and similarly for any posterior quantile).

If the posterior is a "common" distribution, as in many conjugate analyses, we could draw samples from the posterior using R functions.

Example 1: (General Social Survey)

- Sample 1: # of children for women age 40+, no bachelor's degree.
- ► Sample 2: # of children for women age 40+, bachelor's degree or higher.
- Assume $Poisson(\theta_1)$ and $Poisson(\theta_2)$ models for the data.
- We use gamma(2,1) priors for θ_1 and for θ_2 .

The Monte Carlo Method

- **Data**: $n_1 = 111$, $\sum_i x_{i1} = 217$
- **Data**: $n_2 = 44$, $\sum_i x_{i2} = 66$
- ▶ \Rightarrow Posterior for θ_1 is gamma(219,112).
- ▶ \Rightarrow Posterior for θ_2 is gamma(68, 45).
- Find $P[\theta_1 > \theta_2 | \mathbf{x}_1, \mathbf{x}_2]$.
- Find posterior distribution of the ratio $\frac{\theta_1}{\theta_2}$.
- See R example using Monte Carlo method on course web page.