
MCMC Methods

I In many cases the posterior distribution does not have a
simple recognizable form, and so we cannot sample from it
using built-in R functions like “rgamma”

I In this case, Markov chain Monte Carlo (MCMC) sampling
methods are used.

I A Markov chain is an ordered, indexed set of random
variables (a stochastic process) in which the value of each
quantity depends probabilistically only on the previous
quantity.



MCMC Methods

I Specifically, if {θ[0], θ[1], θ[2], . . .} is a Markov chain, then it
has the Markovian property:

I For any set A,

P{θ[t] ∈ A|θ[0], θ[1], . . . , θ[t−1]} = P{θ[t] ∈ A|θ[t−1]}

I So θ[t] is conditionally independent of all earlier values
except the previous one.

I So the values in a Markov chain are not independent, but are
“almost independent.”



Gibbs Sampling

I The Gibbs Sampler is a MCMC algorithm that approximates
the joint distribution of k random quantities by sampling
from each full conditional distribution in turn.

I Example: We are interested in the distribution of
θ = (θ1, θ2, . . . , θk). The Gibbs algorithm is:
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3. Repeat steps in (2) until convergence.



Gibbs Sampling

I We must be able to sample from each of the full conditional
distributions to use the Gibbs Sampler.

I Note that in each step, the most recent value of each θj is
conditioned on.

I After many cycles, the sampled values of (θ1, . . . , θk) will
approximate random draws from the joint distribution of
(θ1, . . . , θk).

I Then we can summarize, say, a posterior distribution of
interest as before.



A Simple Gibbs Example

I Example 2: Testing the effectiveness of a seasonal flu shot.

I 20 individuals are given a flu shot at the start of winter.

I At the end of winter, follow up to see whether they contracted
flu.
Let

Xi =

{
1 if shot effective (no flu)

0 if ineffective (contracted flu)

I Suppose the 20th individual was unavailable for followup.

I Define Y =
19∑
i=1

Xi .



A Simple Gibbs Example

I If θ is the probability the shot is effective, then

p(y |θ) =

(
19

y

)
θy (1− θ)19−y

I If we had the complete data (for Y and X20), then

p(θ|y , x20) =

(
20

y + x20

)
θy+x20(1− θ)20−y−x20

I If we put in “temporary” values θ∗ and x∗20 for the unknown
quantities, then

θ|X ∗
20,Y ∼ beta(Y + X ∗

20 + 1, 20− Y − X ∗
20 + 1)

and X20|Y , θ∗ ∼ Bernoulli(θ∗)



A Simple Gibbs Example

I We can repeatedly sample from these “full conditional”
distributions and eventually get a sample from the joint
distribution of (θ, X20).

I See R example with data.



A More Complicated Gibbs Example (Changepoint)

Example 3: (Coal Mining Disasters)

I Gill gives yearly counts of British coal mine disasters,
1851-1962.

I Relatively large counts in the early era, small counts in the
later years.

I Question: When did the mean of the process change?

I We model the data using two Poisson distributions:

I “Early” data: X1, . . . ,Xk |λ
iid∼ Pois(λ), i = 1, . . . , k

I “Later” data: Xk+1, . . . ,Xn|φ
iid∼ Pois(φ), i = k + 1, . . . , n

I We must estimate each Poisson mean, λ and φ, and also the
“changepoint” k.



A More Complicated Gibbs Example (Changepoint)

Consider the priors:

λ ∼ gamma(α, β)

φ ∼ gamma(γ, δ)

k ∼ discrete uniform on{1, 2, . . . , n}

I If we believe the mean annual disaster count for early years is
≈ 4 and for later years is ≈ 0.5, let α = 4, β = 1, γ = 1,
δ = 2 be the hyperparameters.



A More Complicated Gibbs Example (Changepoint)

Then the posterior is π(λ, φ, k|x)

∝ L(λ, φ, k|x)p(λ)p(φ)p(k)
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