
Posterior Predictive Distribution in Regression

I We can also make predictions and “prediction intervals” for
new responses with specified predictor values.

I For example, consider a new observation with predictor
variable values in the vector x∗ = (1, x∗1 , x∗2 , . . . , x∗k−1) (or the
predictor values for several new observations could be
contained in the matrix X∗).

I We can generate the posterior predictive distribution with X∗

and compute the posterior median (for a point prediction) or
posterior quantiles (for a prediction interval).

I See R example.



CHAPTER 7 SLIDES START HERE



Issues with Classical Hypothesis Testing

I Recall that classical hypothesis testing emphasizes the
p-value: The probability (under H0) that a test statistic
would take a value as (or more) favorable to Ha as the
observed value of this test statistic.

I For example, given iid data x = x1, . . . , xn from f (x |θ), where
−∞ < θ < ∞, we might test H0 : θ ≤ 0 vs. Ha : θ > 0 using
some test statistic T (X) (a function of the data).

I Then if we calculated T (x) = T ∗ for our observed data x, the
p-value would be:

p-value = P[T (X) ≥ T ∗|θ = 0]

=

∞∫
T∗

fT (t|θ = 0) dt

where fT (t|θ) is the distribution (density) of T (X).



Issues with Classical Hypothesis Testing

I This p-value is an average over T values (and thus sample
values) that have not occurred and are unlikely to occur.

I Since the inference is based on “hypothetical” data rather
than only the observed data, it violates the Likelihood
Principle.

I Also, the idea of conducting many repeated tests that
motivate “Type I error” and “Type II error” probabilities is
not sensible in situations where our study is not repeatable.



The Bayesian Approach

I A simple approach to testing finds the posterior probabilities
that θ falls in the null and alternative regions.

I We first consider one-sided tests about θ of the form:

H0 : θ ≤ c vs. Ha : θ > c

for some constant c , where −∞ < θ < ∞.

I We may specify prior probabilities for θ such that

p0 = P[−∞ < θ ≤ c] = P[θ ∈ Θ0]

and
p1 = 1− p0 = P[c < θ < ∞] = P[θ /∈ Θ0]

where Θ0 is the set of θ-values such that H0 is true.



The Bayesian Approach

I Then the posterior probability that H0 is true is:

P[θ ∈ Θ0|x] =

c∫
−∞

p(θ|x) dθ

=

c∫
−∞

p(x|θ)p0 dθ

c∫
−∞

p(x|θ)p0 dθ +
∞∫
c

p(x|θ)p1 dθ

by Bayes’ Law (note the denominator is the marginal
distribution of X).



The Bayesian Approach

I Commonly, we might choose an uninformative prior
specification in which p0 = p1 = 1/2, in which case
P[θ ∈ Θ0|x] simplifies to

c∫
−∞

p(x|θ)p0 dθ

∞∫
−∞

p(x|θ)p0 dθ

=

c∫
−∞

p(x|θ) dθ

∞∫
−∞

p(x|θ) dθ



Hypothesis Testing Example

I Example 1 (Coal mining strike data): Let Y = number of
strikes in a sequence of strikes before the cessation of the
series.

I Gill lists Y1, . . . ,Y11 for 11 such sequences in France.

I The Poisson model would be natural, but for these data, the
variance greatly exceeds the mean.

I We choose a geometric(θ) model

f (y |θ) = θ(1− θ)y

where θ is the probability of cessation of the strike sequence,
and yi= number of strikes before cessation.

I Exercise: Show that the Jeffreys prior for θ is
p(θ) = θ−1(1− θ)−1/2. We will use this as our prior.



Hypothesis Testing Example

I So the posterior is:

π(θ|y) ∝ L(θ|y)p(θ)

= θn(1− θ)
P

yi θ−1(1− θ)−1/2

= θn−1(1− θ)
P

yi−1/2

which is a beta(n,
∑

yi + 1/2) distribution.

I We will test H0 : θ ≤ 0.05 vs. Ha : θ > 0.05.

I Then P[θ ≤ 0.05|y] =
0.05∫
0

π(θ|y) dθ, which is the area to the

left of 0.05 in the beta(n,
∑

yi + 1/2) density.

I This can be found directly (or via Monte Carlo methods).

I See R example with coal mining strike data.



Two-Sided Tests

I Two-sided tests about θ have the form:

H0 : θ = c vs. Ha : θ 6= c

for some constant c .

I We cannot test this using a continuous prior on θ, because
that would result in a prior probability P[θ ∈ Θ0] =0 and thus
a posterior probability P[θ ∈ Θ0|x] =0 for any data set x.

I We could place a prior probability mass on the point θ = c ,
but many Bayesians are uncomfortable with this since the
value of this point mass is impossible to judge and is likely to
greatly affect the posterior.



Two-Sided Tests

I One solution: Pick a small value ε > 0 such that if θ is within
ε of c , it is considered “practically indistinguishable” from c .

I Then let Θ0 = [c − ε, c + ε] and find the posterior probability
that θ ∈ Θ0.

I Example 1 again: Testing H0 : θ = 0.10 vs. Ha : θ 6= 0.10.
Letting ε = 0.003, then Θ0 = [0.097, 0.103] and

P[θ ∈ Θ0|y] =

.103∫
.097

π(θ|y) dθ = .033

from R.

I Another solution (mimicking classical approach): Derive a
100(1− α)% (two-sided) HPD credible interval for θ. Reject
H0 : θ = c “at level α” if and only if c falls outside this
credible interval.



Two-Sided Tests

I Note: Bayesian decision theory attempts to specify the cost
of a wrong decision to conclude H0 or Ha through a loss
function.

I We might evaluate the Bayes risk of some decision rule, i.e.,
its expected loss with respect to the posterior distribution of
θ.


