
Bayes’ Law Example

I Example: (1975 British national referendum on whether the
UK should remain part of the European Economic
Community)

I Suppose 52% of voters supported the Labour Party and 48%
the Conservative Party. Suppose 55% of Labour voters
wanted the UK to remain part of the EEC and 85% of
Conservative voters wanted this.

I What is the probability that a person voting “Yes” to
remaining in EEC is a Labour voter?

P(L|Y ) =
P(Y |L)P(L)

P(Y )



Bayes’ Law Example

Note
P(Y ) = P(Y , L) + P(Y , Lc) = P(Y |L)P(L) + P(Y |Lc)P(Lc).
So

P(L|Y ) =
P(Y |L)P(L)

P(Y |L)P(L) + P(Y |Lc)P(Lc)

=
(.55)(.52)

(.55)(.52) + (.85)(.48)
= 0.41.



Bayes’ Law with Multiple Events

Let D represent some observed data and let A, B, and C be
mutually exclusive (and exhaustive) events conditional on D.
Note that

P(D) = P(A ∩D) + P(B ∩D) + P(C ∩D)

= P(D|A)P(A) + P(D|B)P(B) + P(D|C )P(C ).

By Bayes’ Law,

P(A|D) =
P(D|A)P(A)

P(D)

⇒ P(A|D) =
P(D|A)P(A)

P(D|A)P(A) + P(D|B)P(B) + P(D|C )P(C )
.



Bayes’ Law with Multiple Events

I Denoting A, B, C by θ1, θ2, θ3, we can write this more
generally as

P(θi |D) =
P(θi )P(D|θi )∑3
j=1 P(θj)P(D|θj)

.

I If there are k distinct discrete outcomes θ1, . . . , θk , we have,
for any i ∈ {1, . . . , k}:

P(θi |D) =
P(θi )P(D|θi )∑k
j=1 P(θj)P(D|θj)

,

I The denominator equals P(D), the marginal distribution of
the data.

I Note if the values of θ are portions of the continuous real line,
the sum may be replaced by an integral.



Bayes’ Law Example (4 Classes)

Example: In the 1996 General Social Survey, for males (age 30+):

I 11% of those in the lowest income quartile were college
graduates.

I 19% of those in the second-lowest income quartile were
college graduates.

I 31% of those in the third-lowest income quartile were college
graduates.

I 53% of those in the highest income quartile were college
graduates.

What is the probability that a college graduate falls in the lowest
income quartile?



Bayes’ Law Example (4 Classes)

P(Q1|G ) =
P(G |Q1)P(Q1)∑4
j=1 P(G |Qj)P(Qj)

=
(.11)(.25)

(.11)(.25) + (.19)(.25) + (.31)(.25) + (.53)(.25)
= 0.09.

Exercise: Find P(Q2|G ), P(Q3|G ), P(Q4|G ) also. How does this
conditional distribution differ from the unconditional distribution
{P(Q1),P(Q2),P(Q3),P(Q4)}?



Statistics Using Bayes’ Law

I We now consider inference about parameters, based on data.

I Generically denote an unobserved parameter of interest as θ.

I Generically denote our data as D.

I Our probability model for the data, given a value of θ, is
denoted p(D|θ).

I Our model for our prior knowledge about θ is denoted p(θ).

I This could be highly specific or quite vague, depending how
uncertain we are about θ.



Statistics Using Bayes’ Law

I We seek to make probability statements about θ, given some
observed data: p(θ|D).

I By Bayes’ Law,

p(θ|D) =
p(θ)p(D|θ)

p(D)
.

I Note p(D) does not depend on θ and thus carries no
information about θ.

I It is simply a normalizing constant which makes p(θ|D) sum
(or integrate) to 1.



Statistics Using Bayes’ Law

I For inference about θ, it is just as good to write

p(θ|D) ∝ p(θ)p(D|θ)

I The LHS is called the posterior distribution of θ and
represents a compromise between the prior information about
θ in p(θ) and the information from the sample about θ in
p(D|θ).

I Some useful summaries of the posterior are the posterior
mean

E [θ|D] =

∫
θp(θ|D) dθ



Statistics Using Bayes’ Law

and the posterior variance

var [θ|D] = E

{
(θ − E [θ|D])2|D

}
=

∫
(θ − E [θ|D])2p(θ|D) dθ

=

∫
θ2p(θ|D) dθ − 2E [θ|D]

∫
θp(θ|D) dθ

+

(
E [θ|D]

)2 ∫
p(θ|D) dθ

= E [θ2|D]−
(

E [θ|D]

)2

I If the values of θ are discrete, sums would replace the
integrals.



CHAPTER 2 SLIDES START HERE



Some Notation

I Notation: We hereby denote our data as the n × k matrix X.

I We denote the parameter(s) of interest (possibly
multidimensional) to be the vector θ.

I We will denote our posterior distribution for θ using π(·).



Likelihood Theory

I The likelihood function L(θ|X) is a function of θ that shows
how “likely” are various parameter values θ to have produced
the data X that were observed.

I In classical statistics, the specific value of θ that maximizes
L(θ|X) is the maximum likelihood estimator (MLE) of θ.

I In many common probability models, when the sample size n
is large, L(θ|X) is unimodal in θ.

I Note: Unlike p(θ|X), L(θ|X) does not necessarily obey the
usual laws for probability distributions.

I Also, in the classical framework, all the randomness within
L(θ|X) is attached to X, not to θ.



Likelihood Theory

I Mathematically, if the data X represent iid observations from
probability distribution p(X|θ), then

L(θ|X) =
n∏

i=1

p(Xi |θ)

(where X1, . . . ,Xn are the n data vectors).

I The Likelihood Principle of Birnbaum states that (given the
data) all of the evidence about θ is contained in the likelihood
function.

I Likelihood Principle implies: Two experiments that yield equal
(or proportional) likelihoods should produce equivalent
inference about θ.



The Bayesian Framework

I Suppose we observe an iid sample of data X = (X1, . . . ,Xn).

I Now X is considered fixed and known.

I We also must specify p(θ), the prior distribution for θ, based
on any knowledge we have about θ before observing the data.

I Our model for the distribution of the data will give us the
likelihood

L(θ|X) =
n∏

i=1

p(Xi |θ).



The Bayesian Framework

I Then by Bayes’ Law, our posterior distribution is

π(θ|X) =
p(θ)L(θ|X)

p(X)

=
p(θ)L(θ|X)∫

Θ p(θ)L(θ|X) dθ

I Note that the marginal distribution of X, p(X), is simply the
joint density p(θ,X) (i.e., the numerator) with θ integrated
out.

I With respect to θ, it is simply a normalizing constant that
ensures that π(θ|X) integrates to 1.



The Bayesian Framework

I Since p(X) carries no information about θ, for conciseness we
may drop it and write

π(θ|X) ∝ p(θ)L(θ|X).

I Often we can calculate the posterior distribution by
multiplying the prior by the likelihood and then normalizing
the posterior at the last step, by including the necessary
constant.


