A Conjugate analysis with Normal Data (variance known)

- Hence the posterior for μ is simply a normal distribution with mean

$$
\frac{\frac{\delta}{\tau^{2}}+\frac{n \bar{x}}{\sigma^{2}}}{\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}}}
$$

and variance

$$
\left(\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}=\frac{\tau^{2} \sigma^{2}}{\sigma^{2}+n \tau^{2}}
$$

- The precision is the reciprocal of the variance.
- Here, $\frac{1}{\tau^{2}}$ is the prior precision ...
- $\frac{n}{\sigma^{2}}$ is the data precision...
- ... and $\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}}$ is the posterior precision.

A Conjugate analysis with Normal Data (variance known)

- Note the posterior mean $E[\mu \mid \mathbf{x}]$ is simply

$$
\frac{1 / \tau^{2}}{1 / \tau^{2}+n / \sigma^{2}} \delta+\frac{n / \sigma^{2}}{1 / \tau^{2}+n / \sigma^{2}} \bar{x},
$$

a combination of the prior mean and the sample mean.

- If the prior is highly precise, the weight is large on δ.
- If the data are highly precise (e.g., when n is large), the weight is large on \bar{x}.
- Clearly as $n \rightarrow \infty, E[\mu \mid \mathbf{x}] \approx \bar{x}$, and $\operatorname{var}[\mu \mid \mathbf{x}] \approx \frac{\sigma^{2}}{n}$ if we choose a large prior variance τ^{2}.
- This implies that for τ^{2} large and n large, Bayesian and frequentist inference about μ will be nearly identical.

A Conjugate analysis with Normal Data (mean known)

- Now suppose X_{1}, \ldots, X_{n} are iid $N\left(\mu, \sigma^{2}\right)$ with μ known and σ^{2} unknown.
- We will make inference about σ^{2}.
- Our likelihood

$$
L\left(\sigma^{2} \mid \mathbf{x}\right) \propto\left(\sigma^{2}\right)^{-\frac{n}{2}} e^{-\frac{n}{2 \sigma^{2}}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right]}
$$

- Let W denote the sufficient statistic $\frac{1}{n} \sum\left(X_{i}-\mu\right)^{2}$.
- The conjugate prior for σ^{2} is the inverse gamma distribution.
- If a r.v. $Y \sim$ gamma, then $1 / Y \sim$ inverse gamma (IG).
- The prior for σ^{2} is

$$
p\left(\sigma^{2}\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\sigma^{2}\right)^{-(\alpha+1)} e^{-\left(\beta / \sigma^{2}\right)} \text { for } \sigma^{2}>0
$$

where $\alpha>0, \beta>0$.

A Conjugate analysis with Normal Data (mean known)

- Note the prior mean and variance are

$$
\begin{gathered}
E\left(\sigma^{2}\right)=\frac{\beta}{\alpha-1} \text { provided that } \alpha>1 \\
\operatorname{var}\left(\sigma^{2}\right)=\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)} \text { provided that } \alpha>2
\end{gathered}
$$

- So the posterior for σ^{2} is:

$$
\begin{aligned}
\pi\left(\sigma^{2} \mid \mathbf{x}\right) & \propto L\left(\sigma^{2} \mid \mathbf{x}\right) p\left(\sigma^{2}\right) \\
& \propto\left(\sigma^{2}\right)^{-\frac{n}{2}} e^{-\frac{n}{2 \sigma^{2}} w}\left(\sigma^{2}\right)^{-(\alpha+1)} e^{-\left(\beta / \sigma^{2}\right)} \\
& =\left(\sigma^{2}\right)^{-\left(\alpha+\frac{n}{2}+1\right)} e^{-\frac{\beta+\frac{n}{2} w}{\sigma^{2}}}
\end{aligned}
$$

- Hence the posterior is clearly an IG $\left(\alpha+\frac{n}{2}, \beta+\frac{n}{2} w\right)$ distribution, where $w=\frac{1}{n} \sum\left(x_{i}-\mu\right)^{2}$. Conjugate!

A Conjugate analysis with Normal Data (mean known)

- How to choose the prior parameters α and β ?
- Note

$$
\alpha=\frac{\left[E\left(\sigma^{2}\right)\right]^{2}}{\operatorname{var}\left(\sigma^{2}\right)}+2 \text { and } \beta=E\left(\sigma^{2}\right)\left\{\frac{\left[E\left(\sigma^{2}\right)\right]^{2}}{\operatorname{var}\left(\sigma^{2}\right)}+1\right\}
$$

so we could make guesses about $E\left(\sigma^{2}\right)$ and $\operatorname{var}\left(\sigma^{2}\right)$ and use these to determine α and β.

A Model for Normal Data (mean and variance both unknown)

- When X_{1}, \ldots, X_{n} are iid $N\left(\mu, \sigma^{2}\right)$ with both μ, σ^{2} unknown, the conjugate prior for the mean explicitly depends on the variance:

$$
\begin{aligned}
p\left(\sigma^{2}\right) & \propto\left(\sigma^{2}\right)^{-(\alpha+1)} e^{-\beta / \sigma^{2}} \\
p\left(\mu \mid \sigma^{2}\right) & \propto\left(\sigma^{2}\right)^{-\frac{1}{2}} e^{-\frac{1}{2 \sigma^{2} / s_{0}}(\mu-\delta)^{2}}
\end{aligned}
$$

- The prior parameter s_{0} measures the analyst's confidence in the prior specification.
- When s_{0} is large, we strongly believe in our prior.

A Model for Normal Data (mean and variance both unknown)

The joint posterior for $\left(\mu, \sigma^{2}\right)$ is:
$\pi\left(\mu, \sigma^{2} \mid \mathbf{x}\right) \propto L\left(\mu, \sigma^{2} \mid \mathbf{x}\right) p\left(\sigma^{2}\right) p\left(\mu \mid \sigma^{2}\right)$

$$
\begin{aligned}
& \propto\left(\sigma^{2}\right)^{-\alpha-\frac{n}{2}-\frac{3}{2}} e^{-\frac{\beta}{\sigma^{2}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{1}{2 \sigma^{2} / s_{0}}(\mu-\delta)^{2}} \\
& =\left(\sigma^{2}\right)^{-\alpha-\frac{n}{2}-\frac{3}{2}} e^{-\frac{\beta}{\sigma^{2}}-\frac{1}{2 \sigma^{2}}\left(\sum x_{i}^{2}-2 n \bar{x} \mu+n \mu^{2}\right)-\frac{1}{2 \sigma^{2} / s_{0}}\left(\mu^{2}-2 \mu \delta+\delta^{2}\right)} \\
& =\left[\left(\sigma^{2}\right)^{-\alpha-\frac{n}{2}-\frac{1}{2}} e^{-\frac{\beta}{\sigma^{2}}-\frac{1}{2 \sigma^{2}}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)}\right] \\
& \quad \times\left[\left(\sigma^{2}\right)^{-1} e^{-\frac{1}{2 \sigma^{2}}\left\{\left(n+s_{0}\right) \mu^{2}-2\left(n \bar{x}+\delta s_{0}\right) \mu+\left(n \bar{x}^{2}+s_{0} \delta^{2}\right)\right\}}\right]
\end{aligned}
$$

Note the second part is simply a normal kernel for μ.

A Model for Normal Data (mean and variance both unknown)

- To get the posterior for σ^{2}, we integrate out μ :

$$
\begin{aligned}
\pi\left(\sigma^{2} \mid \mathbf{x}\right) & =\int_{-\infty}^{\infty} p\left(\mu, \sigma^{2} \mid \mathbf{x}\right) \mathrm{d} \mu \\
& \propto\left(\sigma^{2}\right)^{-\alpha-\frac{n}{2}-\frac{1}{2}} e^{-\frac{1}{\sigma^{2}}\left[\beta+\frac{1}{2}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)\right]}
\end{aligned}
$$

since the second piece (which depends on μ) just integrates to a normalizing constant.

- Hence since $-\alpha-\frac{n}{2}-\frac{1}{2}=-\left(\alpha+\frac{n}{2}-\frac{1}{2}\right)-1$, we see the posterior for σ^{2} is inverse gamma:

$$
\sigma^{2} \left\lvert\, \mathbf{x} \sim I G\left(\alpha+\frac{n}{2}-\frac{1}{2}, \beta+\frac{1}{2} \sum\left(x_{i}-\bar{x}\right)^{2}\right)\right.
$$

A Model for Normal Data (mean and variance both unknown)

- Note that

$$
\pi\left(\mu \mid \sigma^{2}, \mathbf{x}\right)=\frac{\pi\left(\mu, \sigma^{2} \mid \mathbf{x}\right)}{\pi\left(\sigma^{2} \mid \mathbf{x}\right)}
$$

- After lots of cancellation,

$$
\begin{aligned}
\pi\left(\mu \mid \sigma^{2}, \mathbf{x}\right) & \propto \sigma^{-2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(n+s_{0}\right) \mu^{2}-2\left(n \bar{x}+\delta s_{0}\right) \mu\right.\right. \\
& \left.\left.+\left(n \bar{x}^{2}+s_{0} \delta^{2}\right)\right]\right\} \\
= & \sigma^{-2} \exp \left\{-\frac{1}{2 \sigma^{2} /\left(n+s_{0}\right)}\left[\mu^{2}-2 \frac{n \bar{x}+\delta s_{0}}{n+s_{0}} \mu+\frac{n \bar{x}^{2}+s_{0} \delta^{2}}{n+s_{0}}\right]\right\}
\end{aligned}
$$

- Clearly $\pi\left(\mu \mid \sigma^{2}, \mathbf{x}\right)$ is normal:

$$
\mu \mid \sigma^{2}, \mathbf{x} \sim N\left(\frac{n \bar{x}+\delta s_{0}}{n+s_{0}}, \frac{\sigma^{2}}{n+s_{0}}\right)
$$

A Model for Normal Data (mean and variance both unknown)

- Note as $s_{0} \rightarrow 0, \mu \mid \sigma^{2}, \mathbf{x} \dot{\sim} N\left(\bar{x}, \frac{\sigma^{2}}{n}\right)$.
- Note also the posterior mean is

$$
\left(\frac{n}{n+s_{0}}\right) \bar{x}+\left(\frac{s_{0}}{n+s_{0}}\right) \delta .
$$

- The relative sizes of n and s_{0} determine the weighting of the sample mean \bar{x} and the prior mean δ.

Example 1: Midge Data

- Example 1: X_{1}, \ldots, X_{9} are a random sample of midge wing lengths (in mm). Assume the $X_{i}^{\prime} s \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right)$.
- Example 1(a): If we know $\sigma^{2}=0.01$, make inference about μ.
- Example 1(a): Make inference about μ and σ^{2}, both unknown.

