
Chapter 10:

Storing Macro

Programs and

Advanced Macro

Techniques

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Reusing Macro Programs

◼ Macros in temporary SAS catalogs are only

available for execution during the current SAS

session. Such catalogs are deleted at the end of

the session.

◼ Macros can be stored permanently for reuse

later.

◼ Methods for storing macros permanently:

– the % INCLUDE statement

– the autocall macro facility

– permanently stored compiled macros

3

Storing Macro Definitions in

External Files
◼ Save macros in an external file.

◼ Use a %INCLUDE statement to insert the statements

into a program.

%INCLUDE file-specification </SOURCE2>;

– file-specification is the location of the file with
the SAS code to be inserted

– SOURCE2 directs SAS to display the inserted
SAS code in the log

4

Advantage of Storing Macro

Definitions in External Files and

Using the %INCLUDE Statement
◼ Source code of the macro definition does not

need to be in the program.

◼ A single copy of the macro definition is

accessible to other programs.

◼ Macro definitions in external files are easily

viewed and edited with any text editor.

◼ No special SAS system options are required to

access macros this way.

5

Using the AUTOCALL Facility
◼ Permanently store macro definitions in source

libraries called autocall libraries.

◼ An autocall library, whether it be the default one

or a user-created one, is either a SAS catalog,

an external directory, or a partitioned data set.

◼ SAS provides several macro definitions in a

default autocall library.

◼ Multiple autocall libraries can be concatenated.

◼ Specify the SASAUTOS and MAUTOSOURCE

system options.

6

Default Autocall Library & Autocall

Macros Provided with SAS Software
◼ SAS provides several macros in a default

autocall library.

◼ The libraries provided by SAS will depend on

the SAS products licensed to your site.

◼ These autocall macros can be used without

having to define or include them in your

programs.

◼ Upon SAS installation, the autocall libraries are

included in the value of the SASAUTOS system

option in the configuration file.

7

Accessing Autocall Macros
◼ In order to access autocall macros, use two

system options:

◼ MAUTOSOURCE system option must be

specified

◼ SASAUTOS system options must identify

location of autocall library or libraries

8

MAUTOSOURCE System Option

Specifies Autocall Facility is

Available

OPTIONS MAUTOSOURCE | NOMAUTOSOURCE;

◼ MAUTOSOURCE is the default and causes the macro
processor to search the autocall libraries for a member
with the requested name when a macro name is not
found in the WORK library.

◼ NOMAUTOSOURCE prevents the macro processor from
searching the autocall libraries when a macro name is
not found in the WORK library.

9

SASAUTOS Controls Where Macro

Facility Looks for Autocall Macros

Options SASAUTOS= library-1;

Options SASAUTOS= (library-1, . . . , library-n);

◼ library-1 is a location that contains library members that contain a
SAS macro definition. A location can be a SAS fileref or a host-
specific location name enclosed in quotation marks. Each member
contains a SAS macro definition.

◼ (library-1, . . . , library-n) identifies two or more locations that
contain library members that contain a SAS macro definition. When
you specify two or more autocall libraries, enclose the specifications
in parentheses and separate them with either a comma or a blank
space.

The DOSUBL Function

◼ The DOSUBL function takes as its input a
text string, and enables immediate
execution (in a "side session") of the SAS
code within it.

◼ Macro variables that are created or
updated during the code's execution are
passed back to the calling environment.

◼ DOSUBL is used in a DATA step, or with
%SYSFUNC outside a step.

University of South Carolina 10

More on DOSUBL

◼ DOSUBL can conveniently run a data-
driven macro program that executes
repeatedly for the various values of a
variable in a data set (see example),
without tediously calling the macro
repeatedly.

◼ DOSUBL can be a convenient tool for
simplifying a complicated program.

University of South Carolina 11

DOSUBL and CALL EXECUTE

◼ The DOSUBL function is similar to the
CALL EXECUTE subroutine, but that has
different timing: CALL EXECUTE waits
until the DATA step is completed before
executing the code.

◼ See examples to show the differences in
how DOSUBL and CALL EXECUTE are
processed by SAS.

University of South Carolina 12

