
Chapter 13:

Formatting Data

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Creating a Format with Overlapping

Values

VALUE format-name (MULTILABEL);

◼ allows the assignment of multiple labels or
external values to internal values.

◼ Example of VALUE statement assigning multiple
labels to a single internal value:

value one (multilabel)

1=’ONE in English’

1=’UNO in Spanish’;

(Multiple labels can also be assigned to a
single range of internal values.)

3

Creating a Format with Overlapping

Values (continued)

◼ Example of assigning multiple labels to
overlapping ranges of internal values:

value age (multilabel)

15-29=’below 30’

15-19=’15 to 19’

20-29=’20 to 29’;

4

Creating a Format with Overlapping

Values (continued)

◼ Multilabel formatting allows an observation to be

included in multiple rows or categories.

◼ To use multilabel formats, specify the MLF

option in class variables in procedures that

support it (e.g., PROC TABULATE, PROC

MEANS, PROC SUMMARY).

5

Creating a Format with Overlapping

Values (continued)
proc format;

value age (multilabel)

15-29=’below 30’

15-19=’15 to 19’

20-29=’20 to 29’;

data age;

input age books @@;

cards;

15 13 20 13 25 22

;

proc means sum maxdec=0;

class age/mlf;

format age age.;

var books;

run;

The MEANS Procedure

Analysis Variable : counter

N

age Obs Sum

’15 to 19’ 1 13

’20 to 29’ 2 35

’below 30’ 3 48

6

Creating Custom Formats Using the

Picture Statement

◼ PICTURE statements can be used to create a

template for printing numbers.

PICTURE format-name

value-range=’picture’;

◼ Value-range is the individual value or range of values to

be labeled

◼ Picture specifies a template for formatting values of

numeric variables. The template is a sequence of at

most 40 characters enclosed in quotation marks.

7

Creating Custom Formats Using the

Picture Statement (continued)

◼ There are three types of characters in

pictures:

1. Digit selectors

2. Message characters

3. Directives

8

Digit Selectors in the Picture

Statement (continued)

◼Digit selectors:

– are numeric characters--0 through 9.

– define positions for numeric values.

◼ Nonzero digit selectors add zeros to the

formatted value as needed.

◼ Zero digit selectors do not add any zeros

to the formatted value.

9

Digit Selectors in the Picture

Statement (continued)

◼ Example for Digit Selectors

Picture
Definition

Data
Values

Formatted
Values

picture month 1-12=’99’; 01 01

1 01

12 12

picture month 1-12=’00’; 01 1

1 1

12 12

10

Message Characters in the Picture

Statement (continued)

◼ Message characters:

– are nonnumeric characters that print as

specified in the picture.

– are inserted into the picture after the numeric

digits are formatted.

– must come after digit selectors in picture

definitions.

11

Message Characters in the Picture

Statement (continued)

◼ Example for Message Characters
Picture Definition Data

Values
Formatted
Values

Picture millA low-high = '009.9M'
(mult=.00001);

1450000 1.4M

Picture millB low-high = '009.9M'
(prefix='$' mult=.00001);

1450000 $1.4M

Picture millC (round) low-high =
'009.9M' (prefix='$' mult=.00001);

1450000 $1.5M

• M is the message character in the examples above.

• The multiplier (MULT) is a number that the value is to be multiplied by before formatting.

• The PREFIX option can be used to append text in front of digits.

• The ROUND option rounds the value to the nearest integer before formatting. Without the

ROUND option, the format multiplies the value by the multiplier, truncates the decimal

portion (if any), and prints the result according to the picture definition. With the ROUND

option, the format multiplies the value by the multiplier, rounds that result to the nearest

integer, and then formats the value according to the picture definition. A value of .5

rounds to the next highest integer.

12

Directives in the Picture Statement

(continued)

◼ Directives:

– are special characters that can be used in the

picture to format date, time, or datetime

values.

– must specify the DATATYPE= option in the

PICTURE statement. The option specifies

that the picture applies to a SAS date, SAS

time, or SAS datetime value. The option

value is either DATE, TIME, or DATETIME.

13

Directives in the Picture Statement

(continued)

◼ Example for Directives

proc format lib=form541;

picture dt

low-high = 'TIME STAMP: %A %B %d, %Y.'

(datatype=date)

;

picture tm

low-high = '%I:%M.%S%p'

(datatype=time);

data _null_;

file print;

now = today();

tm = time();

put now dt40. tm tm.;

run;

TIME STAMP: Wednesday January 18, 2012. 11:7.55PM

%A = full weekday name

%B = full month name

%d = day of the month with no

leading zero

%Y = year with century

%I = 12-hr clock time with no

leading zero

%M = minute as a decimal number

0-59 with no leading zero

%S = second as a number 0-59

with no leading zero

%p = AM or PM

dt40. displays the value of variable

now up to 40 characters

14

Managing Custom Formats: Using

FMTLIB with PROC FORMAT to

Document Formats

◼ Adding the keyword FMTLIB to the PROC

FORMAT statement displays a list of all the

formats in the specified catalog, along with

descriptions of values.

◼ The SELECT and EXCLUDE statements allow

you to process specific formats instead of

processing an entire catalog.

15

Managing Custom Formats: Using

FMTLIB with PROC FORMAT to

Document Formats (continued)

◼ Example:

libname form541 'f:\STAT 541\sas formats';

proc format lib=form541 fmtlib;

select dt tm;

*exclude dt;

16

Managing Custom Formats: Using

FMTLIB with PROC FORMAT to

Document Formats (continued)

Example of format listings from a specified catalog

17

Managing Custom Formats: Using

PROC CATALOG to Manage

Formats

◼ Formats are saved as catalog entries.

Therefore, PROC CATALOG can be used to

manage the formats.

◼ PROC CATALOG can:

1. Create a listing of catalog contents

2. Copy a catalog or selected entries within a catalog

3. Delete or rename entries within a catalog

18

Managing Custom Formats: Using

PROC CATALOG to Manage

Formats (continued)

◼ Example:

proc catalog catalog=form541.formats;

copy out=work.formats;

select dt.format;

run;

proc catalog cat=work.formats;

contents;

run;

• Use the full catalog

entry name of

DT.FORMAT for DT in

the SELECT

statement.

• The format DT is

copied from the

form541.formats

catalog to the

work.formats catalog.

• The CONTENTS

statement displays the

contents of the

work.formats catalog.

19

Using Custom Formats

◼ SAS statements in a DATA Step can

permanently assign a format to a

variable.

◼ A format can be temporarily specified for

a variable in a PROC step.

◼ PROC DATASETS can be used to

assign, change, or remove the format

associated with a variable in a SAS data

set.

20

Using Custom Formats (continued)

◼ Example:

proc datasets lib=Mylib;

modify flights;

format dest $dest.;

format baggage;

quit;

• Mylib is the name of the

SAS library that contains

the data that needs to be

modified.

• Flights is the name of the

SAS data set to be

modified.

• The format $dest is

associated with variable

dest.

• Since no format is

associated with variable

baggage, the format

associated with the

variable is removed.

21

Using a Permanent Storage

Location for Formats
◼ When a format is permanently associated with a

variable, it is important to know where the

format is located and to reference it whenever

the variable is being used.

◼ The location of the format is determined when

the format is created in PROC FORMAT.

22

Using a Permanent Storage

Location for Formats (continued)
◼ Formats can be stored anywhere. However,

SAS must be told which format catalogs to

search before the formats can be accessed.

◼ When a format is referenced, SAS

automatically looks through the following

libraries in this order:

– Work.formats

– Libref.formats(The library libref is recommended for formats

because it is automatically searched when a format is referenced. Use

LIB=Libref in the PROC FORMAT step that creates the format. Use the

same libname statement with the library name Libref in the program

that needs to reference the format.)

23

Using a Permanent Storage

Location for Formats (continued)
◼ When other libraries or catalogs need to be

searched, use the FMTSEARCH= system

option to indicate where to search for formats.

OPTIONS FMTSEARCH = (catalog-1 catalog-2…

catalog-n);

24

Substituting Formats to Avoid

Errors
◼ If SAS fails to locate the format you need, it

issues an error message and stops processing

the step. The system behavior defaults to

FMTERR.

◼ To prevent this, use the NOFMTERR option

where SAS substitutes a format (w. or $w.) for

the missing format and continues processing.

OPTIONS FMTERR | NOFMTERR;

25

Creating Formats from SAS Data

Sets
◼ PROC FORMAT’S CNTLIN = option is used to

read the input control data set and create the

format.

◼ The input control data set must be of a certain

form with all the information needed to create

the format.

INPUT CONTROL DATA SETS (CNTLIN=)

TYPE:

C for Character FORMAT

N for Numeric FORMAT

I for Numeric INFORMAT

J for Character INFORMAT

27

Creating SAS Data Sets from

Custom Formats
◼ Use PROC FORMAT’S CNTLOUT = option to

create a SAS data set (a.k.a. output control data

set).

◼ The output data set will contain variables that

completely describe all aspects of each format,

including optional settings.

28

Creating SAS Data Sets from

Custom Formats (continued)
◼ Control output data sets are useful when you

need to modify a format but no longer have the

specifications for the format in a SAS program

or in the form of an input control data set.

1. Use the CNTLOUT= option to obtain the output

control data set associated with a format.

2. Edit the data set so that it is suitable for use with the

CNTLIN= option.

3. Create the format using the updated data set using

the CNTLIN= option.

29

Creating SAS Data Sets from

Custom Formats (continued)

proc format cntlout=outform;

value $gender ’M’=’male’ ’F’=’female’;

30

Creating SAS Data Sets from

Custom Formats (continued)

This is data set outform.
F D

M E L P N

T S L F E R O S E

N T A A N F E M F E T E E

O A A E B M M U G U F U I D Y X X H

B M R N E I A L T Z I L L I P C C L

S E T D L N X T H Z X T L T E L L O

1 GENDER F F female 1 40 6 6 0 0 0 C N N

2 GENDER M M male 1 40 6 6 0 0 0 C N

31

Creating SAS Data Sets from

Custom Formats (continued)

This is the PROC CONTENTS output for data set OUTFORM.

Data Set Name: WORK.OUTFORM Observations: 2

Member Type: DATA Variables: 17

Engine: V612 Indexes: 0

Created: 22:16 Tue, Jul 13, 2011 Observation Length: 63

Last Modified: 22:16 Tue, Jul 13, 2011 Deleted Observations: 0

Protection: Compressed: NO

Data Set Type: Sorted: NO

Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 8192

Number of Data Set Pages: 1

File Format: 607

First Data Page: 1

Max Obs per Page: 129

Obs in First Data Page: 2

32

Creating SAS Data Sets from

Custom Formats (continued)

This is the rest of the PROC CONTENTS output for data set OUTFORM.

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

--

7 DEFAULT Num 3 22 Default length

16 EEXCL Char 1 52 End exclusion

3 END Char 1 9 Ending value for format

12 FILL Char 1 46 Fill character

1 FMTNAME Char 8 0 Format name

9 FUZZ Num 8 28 Fuzz value

17 HLO Char 10 53 Additional information

4 LABEL Char 6 10 Format value label

8 LENGTH Num 3 25 Format length

6 MAX Num 3 19 Maximum length

5 MIN Num 3 16 Minimum length

11 MULT Num 8 38 Multiplier

13 NOEDIT Num 3 47 Is picture string noedit?

10 PREFIX Char 2 36 Prefix characters

15 SEXCL Char 1 51 Start exclusion

2 START Char 1 8 Starting value for format

14 TYPE Char 1 50 Type of format

