
Chapter 22: Using

Best Practices

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Outline

◼ Executing Only Necessary Statements

◼ Eliminating Unnecessary Passes through the

Data

◼ Reading and Writing Only Essential Data

◼ Storing Data in SAS Data Sets

◼ Avoiding Unnecessary Procedure Invocation

3

Executing Only Necessary

Statements

◼ Position of subsetting IF
– Even when subsetting IF is constructed from calculated

variables, try to position it as soon as possible in the program

to prevent unnecessary processing of cases that will not be

output

4

Executing Only Necessary

Statements

data doerasch;

set doe2012.doedb;

nonmiss=nmiss(of q1-q25);

if nonmiss le 7;

array q q1-q25;

sone=0;

stwo=0;

sthree=0;

sfour=0;

sfive=0;

totscore=0;

do over q;

totscore+q;

if q eq 1 then sone+1;

else if q eq 2 then stwo+1;

else if q eq 3 then sthree+1;

else if q eq 4 then sfour+1;

else if q eq 5 then sfive+1;

end;

run;

5

Executing Only Necessary

Statements

◼ Using Conditional Logic Efficiently

– IF-THEN/ELSE is efficient when

▪ condition is based on character values

▪ Data values are unevenly distributed

▪ Condition comprises a small number of cases

▪ Condition is ordered by frequency of occurrence

▪ ELSE IF and DO/END constructions are used

– SELECT (we’ve seen this once before) is efficient

when

▪ condition is based on numeric variables

▪ Data values are evenly distributed

▪ DO/END constructions are used

6

Executing Only Necessary

Statements

◼ SELECT example

data a; set b;

select(varname);

when(num1) do; .. end;

when(num2) do; .. end;

..

otherwise do;.. end;

end;

7

Executing Only Necessary

Statements

◼ IF-THEN/ELSE conditions suggest a macro

◼ The value(s) that determine whether the

logical condition is true may be turned into

value(s) of macro parameter(s)

8

Eliminating Unnecessary Passes

through the Data

◼ Create multiple data sets from a single data

set with OUTPUT (vs. multiple subsetting IFs)

data a b; set c;

if condition1 then output a;

else output b; run;

9

Eliminating Unnecessary Passes

through the Data

◼ Use WHERE in PROCs (e.g., PROC PRINT

and PROC SORT) rather than a subsetting IF

in a DATA step following by the PROC

◼ Use PROC DATASETS to modify data

attributes rather than the DATA step

– Cannot modify data (e.g., LENGTH, type), only

descriptions (e.g., LABEL, NAME)

10

Reading and Writing Only Essential

Data

◼ WHERE is more efficient than subsetting IF for

variables in the input data set
– WHERE selects cases in the input buffer

– Subsetting IF selects cases after they have been loaded from

the input buffer into the PDV (Program Data Vector)

◼ Subsetting IF can operate on any variable in the PDV,

including newly-created variables

◼ Subsetting IF can operate on external data sets

◼ Subsetting IF can be embedded in conditional

statements

11

Reading and Writing Only Essential

Data

proc print data=a (firstobs=4 obs=3);

where condition;

◼ FIRSTOBS and OBS refer to the observations

in the subset, not the original data set

12

Reading and Writing Only Essential

Data

◼ When creating a new data set from an

external file (e.g., called with an INFILE

statement), position subsetting IF after the

INPUT statement to improve efficiency

– This works when the INPUT statement only reads a

subset of the variables in the external file (e.g.,

through column-formatting)

13

Reading and Writing Only Essential

Data

◼ Using KEEP= and DROP= in a SET statement

is more efficient than using them in either a

DATA statement, or using KEEP and DROP

statements in a DATA step
– Reasoning is similar to reasoning for preferring WHERE over

a subsetting IF (with similar disadvantages as well)

14

Storing Data in SAS Data Sets

◼ Advantages of storing data in a permanent

SAS data set rather than reading from a raw

data file when

– More efficient when repeatedly using the data set

in PROC or DATA steps

– Self-documentation (labels, names, lengths, etc)

– No processing of the raw data before using

15

Avoid Unnecessary Process

Invocation

◼ Use procedures that can create multiple

reports
– PROC SQL

– DATASETS (you can process multiple data sets by including

MODIFY/RUN blocks in PROC DATASETS, or use implicit

RUN statements)

– FREQ (e.g. TABLE A B A*B)

– TABULATE

– BY groups

– RUN group processing (DATASETS, CHART, PLOT, GLM

REG, DATASETS

