
Chapters 7 & 8:

Introducing Macro

Variables

1

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University

of South Carolina

Outline

◼ Automatic Macro Variables

◼ User-defined Macro Variables

◼ Processing Macro Variables

◼ Displaying Macro Variables

◼ Masking Special Characters

◼ Manipulating Character Strings

◼ SAS Functions and Macro Variables

2

Macro Variables

◼ Macro variables allow the user

– to substitute text—particularly repetitive text

– to obtain session information

– to obtain information on text strings

3

Macro Variables-%LET

◼ SAS programs often include a single variable

used and defined in multiple locations

◼ %LET allows the user to define a macro

variable, often at the start of the program, and

substitute the macro variable throughout the

program

4

Macro Variables-%LET

◼ Original code

title "Citibase Data

for 1991";
data citiday1991;

set citiday;

if

year(collection_dat

e)=1991;

run;

5

◼ Modified code

%let year=1991;

title "Citibase Data

for &year";

data citiday&year;

set citiday;

if

year(collection_date)

=&year;

Macro Variables

◼ SAS’s macro facility allows text to be

saved as macro variables

◼ Macro variables are independent of SAS

data sets

◼ Two types of macro variables

– automatic

– user-defined

Macro Variables

◼ The value of a macro variable is stored in

a symbol table

◼ Automatic macro variables are always

available in the global symbol table

◼ As you saw from the earlier example,

macro variables are referenced by

preceding their name with a &

Macro Variables

– The macro processor searches symbol tables

for a referenced macro variable

– A reference cannot be identified if it is placed

within single quotes; double quotes must be

used instead

– A message will be printed in the SAS log

when macro variable references cannot be

resolved

Macro Variables

%let year=1991;

title “Citibase Data for &year”;

data citiday&year;

set citiday;

if year(collection_date)=&year;

proc print data=citiday&year

(obs=50);

run;

Automatic Macro Variables

◼ Automatic Macro Variables are created

when a new SAS session starts

◼ As mentioned before, they are global and

typically assigned values by SAS

◼ Users may be able to re-assign values in

some cases

Automatic Macro Variables

◼ The most common automatic variables

reference the current date, day, or time,

the current version of SAS or the current

SAS data set

Automatic Macro Variables

title “Yacht Rentals”;

title2 “Data from &SYSLAST”;

footnote “Created &systime

&sysday, &sysdate9”;

footnote2 “on &sysscp system

using Release &sysver”;

footnote3 “by User &sysuserid”;

Automatic Macro Variables

proc tabulate data=boats

format=dollar9.2;

class locomotion type;

var price;

table type,

mean=type*price;

run;

User-defined macro variables

◼ %LET is the most common method to

assign a value (right side of statement) to

your own macro variable (left side of

statement)

– Values are stored as character strings

– Quotation marks are stored as part of the

value

User-defined macro variables

%let month=JAN;

title "Citibase Data for &month";

data citiday&month;

set citiday;

cdate=put(collection_date,date9.);

cmonth=substr(cdate,3,3);

if cmonth="&month";

proc print data=citiday&month

(obs=50);

run;

Processing Macro Variables

▪ Processing macro variables takes place

within SAS’s general text processing:

▪ Program is sent to the input stack

▪ Code is sent to compiler until the end of a

step

▪ Compiler executes the code

Processing Macro Variables

▪ SAS parses (or tokenizes) the code in the

input stack and passes the tokens to the

compiler a statement at a time

▪ Useful in understanding difficulties that

arise in resolving macro references

Processing Macro Variables

▪ Tokens are

▪ Quoted strings

▪ Numbers

▪ Names (SAS commands, infiles, variables, ..)

▪ Special characters (*, &, ;, ..)

Processing Macro Variables

Example:

sx=sum(of x1-x4);

The 10 tokens are:

sx = sum (of x1 – x4) ;

Processing Macro Variables

▪ Code is sent to the macro processor

when particular token sequences occur

▪ The macro triggers are what you

would expect

- % immediately followed by a name token

- & immediately followed by a name token

▪ Macro variables are created/updated in

the symbol table then sent to the input

stack and tokenized

Displaying Macro Variables

▪ You can display macro variables in the

Log window using either

options symbolgen;

or

%put

▪ %put allows you to print text to the log,

as well as macro variables

Masking Special Characters

▪ SAS has several characters that can make

complex macro variables difficult to print

▪ There are a couple different ways to

handle these difficulties

– %STR and %NRSTR

– %BQUOTE

Masking Special Characters

Two methods to print

a macro variable

that is a sequence

of SAS steps

options

symbolgen;

%let

demo=%str(data

a; set b;

run;);

%let demo=data

a%str(;) set

b%str(;)

run(%str);

Masking Special Characters

The % sign can be used within the %str

argument to print single quotes

embedded in a title.

%options symbolgen;

%let text=%str(Today%’s

Weather);

Masking Special Characters

%nrstr() works in the same way as

%str(), but can also mask macro

characters % and &

options symbolgen;

%let cite=%nrstr((Grego, Li,

Lynch & Sethuraman, 2012));

%put cite is interpreted as

&cite;

Masking Special Characters

▪ %bquote()ignores special

characters during macro

compilation and resolves them

during execution

▪ It’s more user-friendly than %str

Manipulating Character Strings

▪ Macro character functions are obvious

analogs to SAS character functions, but

designed to work with macro variables as

character strings

▪ Some of these work with

−%upcase, %substr, %index, %scan, %cmpres

−%qupcase, etc works similarly to %bquote

SAS Functions and Macro

Variables
▪ %SYSFUNC is a powerful command that

allows you to introduce standard SAS

functions in the macro environment

▪ Only a limited number of SAS functions

are unavailable for use

Macro Variables and text

▪ We have already seen several instances

of macro variables combined with text

▪ E.g:

data citiday&month&year;

▪ SAS may have difficulty resolving some

references, but these can be resolved by

adding a delimiter to the end of a macro

variable name

