
Chapter 8 (cont.):

Processing Macro

Variables at Execution

Time

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Creating a Macro Variable During

DATA Step Execution

Important Reminder: %LET statements

are always processed by the

macroprocessor before the DATA step

is executed. Ignoring this fact can lead

to undesirable results.

3

Example of Incorrect Coding: %LET statements

are processed before the DATA Step is
executed

data books;

input rank 1. +1 title $21.;

if rank=1 then do;

%let titletext=Top Bestseller; end;

else do; %let titletext=Other Bestsellers; end;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

proc print;

where rank=1;

title "&titletext";

run;

4

The SYMPUT Routine

• A CALL routine that can transfer

information between an executing DATA

step and the macro processor

• Creates a macro variable and assigns any

value available in the DATA step to that

macro variable

5

The SYMPUT Routine (continued)

CALL SYMPUT(macro-variable, text);

• Where macro-variable is assigned the

character value of text

• Macro-variable and text can each be:

• A literal, enclosed in quotation marks

• A DATA step variable

• A DATA step expression

6

Example of Using SYMPUT with a Literal
◼ Myfavorite is the macro variable.

◼ Enclose the literal string, “The Hobbit” in quotation marks.

data books;

input rank 1. +1 title $21.;

call symput ('myfavorite','The Hobbit');

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

proc print;

title "These are the Bestsellers, but '&myfavorite' is the best!";

run;

7

Example of Using SYMPUT

with a DATA Step Variable
CALL SYMPUT('macro-variable',DATA-step-variable);
◼ Topseller and rank are the macro variables.

◼ Title is a DATA step variable without quotation marks in the CALL.

8

Example of Using SYMPUT

with a DATA Step Variable
data books;

input rank 1. +1 title $21.;

if rank=1 then do; call symput ('topseller',title);

call symput ('rank’, rank); end;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

proc print;

title "Bestseller List with #&rank-Ranked '&topseller.'";

run;

9

Reminders about Using SYMPUT with a

DATA Step Variable

◼ The values of macro variables are always
character strings. Maximum of 32,767 characters
can be assigned to the receiving macro variable.

◼ An automatic numeric-to-character conversion is
made using the BEST12. format on any numeric
value that is assigned to a macro variable.

◼ Any leading or trailing blanks that are part of the
DATA step expression in the second argument
are stored in the macro variable. Use DATA step
functions to remove the blanks.

10

Examples of DATA Step Functions Useful

for Removing Blanks or Characters

Remove Characters from Strings

◼ COMPBL (Removes multiple blanks from a character string)

◼ COMPRESS (Returns a character string with specified characters
removed from the original string)

Remove Blanks from Strings

◼ LEFT (Left-aligns a character string)

◼ TRIMN (Removes trailing blanks from character expressions, and
returns a string with a length of zero if the expression is missing)

◼ RIGHT (Right aligns a character expression)

◼ STRIP (Returns a character string with all leading and trailing blanks
removed)

◼ TRIM (Removes trailing blanks from a character string, and returns
one blank if the string is missing)

11

Example of Using SYMPUT

with a DATA Step Variable
The DATA Step expression compress(rank) can also be replaced by
put(rank,1.) to achieve the same result.

data books;

input rank 1. +1 title $21.;

if rank=1 then do; call symput ('topseller',trim(title));

call symput ('rank’, compress(rank)); end;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

proc print;

title "Bestseller List with #&rank-Ranked '&topseller.'";

run;

12

The SYMPUTX Routine

CALL SYMPUTX(macro-variable,expression);

• Where macro-variable is assigned the character

value of expression AND automatically removes

leading and trailing blanks from both arguments

• Macro-variable and expression can each be:

• A literal, enclosed in quotation marks

• A DATA step variable

• A Data step expression

13

Example of Using SYMPUTX

with a DATA Step Variable
◼ Replacing SYMPUT with SYMPUTX in the last example eliminates the need

to use the COMPRESS function.

data books;

input rank 1. +1 title $21.;

If rank=1 then do; call symputx ('topseller',title);

call symputx ('rank',rank); end;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

proc print;

title "Bestseller List with #&rank-Ranked '&topseller.'";

run;

14

Controlling Numeric-to-Character

Conversions with the PUT Function

PUT(source, format.)

• Where source is a constant, a variable, or an

expression (numeric or character)

• format. is any SAS format or user-defined format,

which determines:

• the length of the resulting string

• whether the string is right- or left-aligned.

• Source and format. must be the same type

(numeric or character)

15

Examples of the PUT Function in the

SYMPUT Routine

• SAS Date variables are numeric variables.

Let us suppose that begin_date is a SAS

Date variable.

call symput('date',put(begin_date,mmddyy10.));

• Let us suppose that fee and totalpaidup are

both numeric variables.

call symput ('due',trim(left(put(fee*(total-paidup),dollar8.))));

16

Creating Multiple Macro Variables

During DATA Step Execution

◼ There might be a need to create many

macro variables using one DATA step.

◼ You can create multiple macro variables

in one DATA step using CALL

SYMPUT.

17

The SYMPUT Routine with DATA Step

Expressions as Arguments

CALL SYMPUT(expression1,expression2);

• Where expression1 evaluates to a

character value that is a valid macro

variable name. This value changes when

another macro variable is created

• expression2 is the value assigned to the

macro variable specified by expression1

18

Example of Using SYMPUT to Create a

Macro Variable for Each Record in the

DATA Step
◼ Three global macro variables rank1, rank2, and rank3 are defined in the

following program.

◼ Once defined, they can be referenced in other parts of the program.
data books;

input rank 1. +1 title $21.;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

data _null_;

set books;

call symput('rank'||put(rank,1.),title);

run;

%put _user_;

19

Referencing macro Variables Indirectly and

the Forward Re-Scan Rule

• The macro processor resolves two ampersands

(&&) to one ampersand (&), and rescans the

reference.

• To re-scan a reference, the macro processor

repeatedly scans and resolves tokens from left to

right from where multiple ampersands are coded,

until no more triggers are resolved.

• Use &&& in front of a macro variable name when

its value matches the name of a second macro

variable. This indirect reference resolves to the

value of the second macro variable.

20

Referencing Macro Variables Indirectly and

the Forward Re-Scan Rule

• Use &&& in front of a macro variable name when

its value matches the name of a second macro

variable. This indirect reference resolves to the

value of the second macro variable.
%call symput(macroref1,macroref2)

&&¯oref1 ➔ [&&]¯oref1➔ [&][¯oref1] ➔

¯oref2

&¯oref1➔ [&&]macroref1 ➔¯oref1 ➔macroref2

21

Example of Referencing

Macro Variables Indirectly
data books;

input rank 1. +1 title $21.;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

data _null_;

set books;

call symput('rank'||put(rank,1.),title);

%let titleforrank=rank1;

proc print; var rank;

where rank=input(substr("&titleforrank",5,1),1.);

title "Rank for &&&titleforrank";

%let titleforrank=rank3;

proc print; var rank;

where rank=input(substr("&titleforrank",5,1),1.);

title "Rank for &&&titleforrank";
run;

22

Obtaining Macro Variable Values

During DATA Step Execution

◼ Earlier examples showed how the SYMPUT

routine is used to create a macro variable in a

DATA step and how macro variable

references can be used to assign the value of

a macro variable during DATA step

execution.

◼ Obtain or return a macro variable’s value

during DATA step execution by using the

SYMGET function.

23

The SYMGET Function

SYMGET(macro-variable)

Where macro-variable can be specified as:

• A macro variable name, enclosed in

quotation marks

• A DATA step variable name whose value is

the name of a macro variable

• A DATA step character expression whose

value is the name of a macro variable

24

Example of Using the SYMGET Function to

Obtain Macro Variable Values During

DATA Step Execution
data books;

input rank 1. +1 title $21.;

cards;

1 A Tale of Two Cities

2 The Lord of the Rings

3 The Hobbit

;

data _null_;

set books;

call symput('rank'||put(rank,1.),title);

data books2;

set books (keep=rank);

length title $20.;

title=symget('rank'||put(rank,1.));

proc print;

run;

Processing Macro Variables
during PROC SQL Execution

◼ Use the INTO clause in a SELECT statement to

create or update one or more macro variables

– Macro variable names are preceded by a colon

– The INTO clause cannot be used when creating a

table or view

◼ Baseball Data Example

25

Processing Macro Variables
during PROC SQL Execution

proc sql;

select sum(hits)/sum(atbats) format=f4.3 into

:teamba

from bbstats;

quit;

%let teamba=&teamba;

proc print data=bastats noobs label;

title "USC Batting Averages";

title2 "Team Batting Average is &teamba';

run;

26

Creating Many Macro Variables
with INTO

◼ The syntax INTO mname1-mnamek can
be used to create multiple macro variables
in PROC SQL

◼ It is best to construct code that does not
rely on knowing the value of k
beforehand, which is often data
dependent.

27

Creating Many Macro Variables
with INTO

proc sql;

select count(*) into :nrec from tosclaim;

%let nrec=&nrec;

select tos label="Type of Service", nct label="Count",

totalclaim into :tos1-:tos&nrec,

:nct1-:nct&nrec,

:totalclaim1-:totalclaim&nrec from tosclaim;

%put _user_;

28

Creating a Single Macro Variable
from a column with INTO

▪ An entire column can be saved as a single macro

variable in the format of a character-delimited string

proc sql;

select distinct tos into :tostype separated by ', '

from meddb;

%put &tostype;

29

