STAT 541

Chapter 9: Creating
and Using Macro
Programs

~ ©Spring 2012 Imelda Go, John Grego, Jennifer: cki-and the University of South Carolina

Definition

a's]n gle computer instruction that stands
= BFas |

8

te: U)J

D
LD

guence of operations

Hved rurr vvww m -W..C Qm',._: o

N

http://www.webster.com/

Macro Programs (a.k.a. Macros)

m Macros enablestextssubstittition inte programs.

m Unlike macro variables, macros can use conditional
logic.

B Programs can become more dynamic and reusable,
shorter, and easier to follow.

m |t IS useful for automation. Repetitive tasks can be
performed guickly and efficiently. Macres can generalize
the same or similar cede. Parameters can be passed to
the macro so that the macro Itself does not have to be
changed prior to execution.

m |t can help towards modular programming. Referencing
a macro Is similar to calling a subroutine. The main
program can become more readable.

What is the SAS Macro Facility?

m |1 IS a.toelfertext substitution that IS
meant to assist you In constructing
your programs. The facility Is part of
base SAS. It has its own language
that Is different from that used in
base SAS, but the two languages
have similar conventions and syntax.

What are the potential

disadvantages:ofsusing the SAS
Macro Facility?

m Used a certain way, macros can
make your programs harder to read.

B Sharing macro programs with users
Who do not use macros has Iits
challenges.

What are the SAS Macro Facility’s
two components?

B [he macro processor compiles macros and
Integrates it with the SAS job.

B [he macro language Is the interface between the
programmer and the processor.

B [he macro language statements instruct the
Macro processor how to substitute text for you or
how the facility should create the statements for
you. After writing a macro, the macro Is executed
Py INVoking It Instead of manually modifying the
statements In a nen-macro program prior to
execution.

How Is the macro processor triggerea
In a SAS program?
N &varname

This Is a reference to the macro variable named
varname. The current value of the macro variable
will replace all references of &varname in the

program.
® Ybmacroname

ThIS IS a reference to the macro named macroname.
This generates statements (with or without errors)
that are contained in the macro. The contents of the
macro are still subject to debugging by the user.

&)

.

g L

=)

)05

S to invoke the

QLo
l Yy (N

Sy
0

| r_u

macro

Q-
p
>
&)
©
S

)
<

U)
QO
)
-]
®

[®)
=
@)
1

Defining a Macro

‘mThe definition be: J]r'“ vv]"r?-f
%M \;RQ and ends
- mExa m gJe

 S%macro printsubset(gender ttetext),
| w.r)rO(‘ r)rmr wherg remale="&gender;

General Syntax

%MACRO macl

:-5‘_% ME J) <defJ rmmé/

:—J mac ‘fj Hr-lff]v-) lf / V"‘“d \‘)j'_ S “(]r”e “ Ll[fJ_)[E}
. reserv ,J word 1the UFQ macro fe ey
= textis: - - =
— constant text, possibly inclu ding g SAS data set names,
| SAS'varJ'Eleej_,ngtmes; o)t gr\usa[erfl@ﬁ'is., i |

- — macro variables, macro functions, or macro pro Jmm

l

Q)

=
\
("\
O

)
=
=
l
it 6
£358
>
:—

(U

e
o

o
N

(D

Compiling a Macro

m After submitting the macro.definitiongthe macre Scanner
gOoES through It and sends It to the macro processor.

The macro processor:

m Checks for macro language syntax errors (non-macro
language statements are NOT checked until AETER the
macro Is executed)

m \Writes error messages to the SAS log and creates a
dummy (non-executable) macro If there are errors

B Stores the macro for later use if there are no errors. Stores
all compiled macroe language statements and constant text
In a SAS catalog (default is Work.Sasmacr catalog) under
an entry called macre-name.Macro.

11

The MCOMPILENOTE Option

‘ >

~ This option wi Il write a note in the SAS log wh en A
~ macro has com r)le eJ com rJJJA (je) |
 ogn ONS WQM _J\JQTE: NONE | | NOAU? roc;\l_dﬁ | AL
_;-{_4 Defal lrJ\ ONE (nr 10tes written to o th og) |
L. NOAUTOCALL (n ce to log abou cfomr)lgcdd M fro

com r)JJ,JFJOH <cegt r AUT OCALL me rro,))
m ALL (notes to log a EJOJF JH rumr)lgsad macro rornr)rla‘t}on) |

Calling a Macro

it
:—
O
o
~—T
bﬁ
@D
U
C 1y
(@
ﬁ
i
ot
e
i

((®.

aure lrur or 'rhei_S/- S sess}on Wi

E—
-
L

s are specified by placi ru a percent sign (%) before the name of the

macro _ | |
.~ H_can be made :m/wnere N a r)roJr:Irr ,,A epL: within 're gata lines ofa
,)r\ TALIT \ES s [atement

| ‘CJO-»FJOEP«.JLJJ e sem rolorp (lef 0 calls are not SAS statements).

Example: 9 wnr subset calls the m s'QfOf*'ff*‘d printsubset

Macro Execution

- \/\/er SCanner Passes
- PIOCESSeN ergJ [CIe -
.(J,Jrl”/ /\/OR} Sasmacr) for the macro.

~ = Comp J:—‘CJ mMacro Jr'ﬂ guage statements are

}‘\ ')
GJ

ﬂd Of L)F ' er)) S}r]d

o J\/Jrlgro EXec Sution Is res f“*‘d

Developing and Debugging Macros:

- r\ r Joer of SAS system options are
- J\/JRE%JJ\J T Option:
'-—J\/JLOGJG Option G
= Comments can be added tothe
' rojmrr e

The MPRINT Option

This eption shows In the SAS log the code that
results from the macro.

OPTIONS MPRINT | NOMPRINT;

m MPRINT (displays statements generated by macro
execution-- statements are useful for debugging
Macros)

m default NOMPRINT (does not display. statements
generated by macro execution)

16

The MLOGIC Option

~ OPTIONS MLOGIC JJ\Jovn o &

log dur J m J(”rO eA:ecu rJor)

- s er_m prints messa JHJ that'in CJI cate macro
| ;ﬂ__acpr,Josz'z'rJa. vverara En CJJI‘JHJ MACTo r_;‘/{"s‘(,J Jon.;{_?

(messages about macro JCEJOIJ ,Jrrﬁ
Kt

- v] : 2

The Macro Comment Statement

. Macro comments are not part of t
Cp e , |

. Ob*comment;

@ i
D

omm_»ni' S anjy m

(U

S5SAd
OO CA

| '_} = The statement en cJ_) with a semi-colon.

Using Macro Parameters

A parameter list Is an optional part of the %MACRO
statement that names one or more macro variables
whose values are specified upon calling the macro.

Example:

% macro printsubset(gender, titletext);
proc print; where gender="&gender;
title “&titletext™;

% mend printsubset;

The macro prints the variables for records with the
specified gender and titletext macro variable values.

19

General Syntax for %MACRO
Statement

9% MACRO macro-name. <(parameter-//st)></ option-
1 <...option-n>>;

B /macro-name names the macro (a SAS name that
IS not a reserved word in the macro facility)

B parameter-//st names one or more local macro
variables whose values are specified when the
macro is invoked (Macro parameters are separated
by commas and can be referenced in the macro.)

2

0

Syntax for Macros with Positional

Parameters

9% MACRO macro-name

(positional-parameter-1 <. . . ,positional-parameter-n>)
text

SoMEND: macro-name;

m Parameters can be in any order.

m Macro invocation must have them in the same order as
they appear in the %MACRO statement.

B Separate more than one parameter with commas.

m [f an invocation does not supply a value for a positional
parameter, a null value is assigned to that parameter.

21

Syntax for Macros with Keyword

Parameters

9Y%oMACRO macro-name

(keyword-parameter=<value><. . . ,Keyword-parameter-
n=<Vvalue>>)

lext:
SoMEND macro-name;

m Keyword parameters name one or More macro parameters
followed by equal signs. Default values can follow: the
equal signs. An omitted default value is the null value.

m Override a default value by specifying the macro variable
name followed by the equal sign and new value in the
Invecation. 2

Syntax for Macros That Include Mixed

Parameter Lists

% MACRO macro-name
(positional-parameter-1 <. . . ,posjtional-parameter-r>,

Keyword-paramerer=<valie><. . . ,kKeyword-parameter-
n=<vaje>>)

text:
SoMEND: macro-name;

m Parameter lists can consist of both positional and
Keyword parameter lists.

m Positional parameters must be listed first before
any keyword parameters.

23

Syntax for Macros That Include the
PARMBUFEE Option

Y%oMACRO macro-name. /PARMBUFFE;
text
YoMEND macro-name;

m PARMBUFEFE option creates an autematic macro variable
SYSPBUFEF te define a macro that accepts a varying
number of parameters each time you call it.

m SYSPBUEFE has the value of the list of parameters
separated by commas and all enclosed in parentheses.

m [ext contains a reference to the automatic macro variable
SYSPBUFFE 24

The Global Symbol Table

m The table is created during the initialization of a SAS
session and is deleted at the end of the_session. ' The table
contains:glebalimacro variables that:

— are available any time during the session
— can be created by a user

— have values that can be changed during the session (except for
some automatic variables)

m Create a global macro variable with:
— a %LET statement (used outside a macro definition)
— a DATA step that contains a SYMPUT routine
— a DATA step that contains a SYMPUTX routine
— a SELECT statement that contains an INTO clause in PROC SOQL
— A %GLOBAL statement

25

The %GLOBAL Statement

The %GLOBAL statement:

m Creates one or more macro variables in the global symbol table and
assigns null values to them

m Can be used either inside or outside a macro definition
m Has no effect on variables that are already: in the global symbol table

%GLOBAL macro-variaple-1 <.../macro-variaple-n=>;

B /macro-variable-1 <...macro-varaple-n>is the
name of one or more macro variables or a text
expression that generates one or more macro
variable names =

The Local Symbol Table

m When a macro variable is in a local symbol table, It IS
available only during execution of the macro.in.wWhich it IS
defined:

m [he local symbol table contains macro variables that can
be:

— created and Initialized at macro parameter invocation
— created or updated during macro execution
— referenced anywhere within the macro

m Create a local macro variable withiin a macro aefnition:
— parameters in a macro definition
— a %LET statement within a macro definition
— a DATA step that contains a SYMPUT routine within a macro definition
— a DATA step that contains a SYMPUTX routine within a macro definition

— a SELECT statement that contains an INTO clause in PROC SQL within a
macro definition

— A %L OCAL statement

27

The %LOCAL Statement

The %LOCAL statement:

m Can appear only inside a macro definition

m Creates one or more macro variables in the local symbol table and assigns null
values to them

m Has no effect on variables that are already in the local symbol table

%L OCAL macro-variable-1 <...macro-varable-n>;

B /macro-vVariable-1 <...macro-variable-n>is the
name of one or more macro variables or a text
expression that generates one or more macro
variable names 2%

Multiple Local Symbol Tables

wrxurmf/ f‘/ %
re ng ted

=~

during macro execution It there

m Multi Jr* Jor:JJ \/HJJOJ 5 l)}e Ccan exist
d
 macros, If a macro pro JUI

n calls another ma Cro.
program, and if both macros create o local s /rr ._)ol
~ tables, then two local \/mJQJ tables will ex ver]e

the sec Jn d macro executes.

The MPRINTNEST Option

Thisseption allews the macre nesting information te be written
te the SAS log In the MPRINT output. This has no effect on
the MPRINT output that is sent te an external file. MPRINT
and MPRINTNEST must both be set in order for the output te
be written to the log.

OPTIONS MPRINTNEST | NOMPRINTNEST;

m MPRINTNEST specifies that macro nesting information is
written in the MPRINT output in the log

m NOMPRINTNEST specifies that macro nesting information
IS not written In the MPRINT output in the log

30

The MLOGICNEST Option

Ihisseption allews the macre nesting informatien to be
displayed in the MLOGIC output in the SAS log. The setting
does not affect the output of any: currently executing macro.

OPTIONS MLOGICNEST | NOMLOGICNEST;

m MLOGICNEST specifies that macro nesting information is
written in the MLOGIC output in the log

m NOMLOGICNEST: specifies that macro nesting information
IS not written in the MLOGIC output in the log

31

Processing Statements Conditionally
%IF-%THEN/%ELSE . Statement:

%IF expression Y% THEN action;

<%ELSE action; >

B Eexpress/onis any macro expression (constant text, a text expression, a
macro variable reference, a macro call, or a macro program statement)
that resolves to an integer.

m Comparisons are case-sensitive.

m [the expression resolves to an integer other than zero, the expression
IS true and the % THEN clause is processed.

m If the expression resolves to zero, then the expression is false and the
9%ELSE statement, if any, Is processed.

m If the expression resolves to a null value or a value with nonnumeric
characters, the macro processor iSSUES an error message.

m %IF comparisons are case-sensitive. 32

Processing Statements Conditionally

m Use %DO-%ENDwith=%i1f=%THEN and %ELSE
Statements in order to conditionally place text that
contains multiple statements onto the input stack.

%IF expression Y% THEN %DO;
text anad/or macro. language. statements
%END;
%ELSE %DO;

text anad/or macro. language. statements
%END;

B [ext and/or macro. language statements s either constant

text, a text expression, and/or a macro statement. -

Processing Statements lteratively

%DO macro-variable=start.YelOustop:<YoBY ncrement>;
text and macro. language. statements
9%END;

B /7macro-variablels a macro variable or a text expression that generates
d macro variable name (functions as index that determines number of:
loop ! iterations)—If macro variable does not exist, it is created in the
local symbol table.

B Slartand stop are integers or macro expressions that generate
integers to help control the total number of: iterations

B /ncrementis a positive integer (default is 1) that is added to the index
variable in each loop iteration (Jrncrement s evaluated before the first
iteration of the loop and can't be changed as the loop iterates.)

m [he index variable is evaluated at the beginning of each loop. The loop
ends when the index variable first exceeds the stop value.

34

Using Arithmetic and Logical
Expressions.the-%EVAls=Function

m [he %EVAL function evaluates arithmetic and
logical expressions using /nateger: arithmetc.

Y%EVAL (arithmetic or logical express/ion)

m Caution: Error messages are generated in the log
when the expression contains hon-integer values.
The function does rot convert a value that
contains a period to a number.

35

Using Arithmetic and Logical
Expressions.the- %SY:SEVALE
Function

m [he %SYSEVALF function evaluates arithmetic and
logical expressions Using floating-point arthmetic.

%SYSEVALF (expression, <conversion-type=>);

B [he second parameter conversion-type.is optional
and can be BOOLEAN, CEIL, FLOOR, or INTEGER.

m [his is the only macro function that can evaluate
expressions with floating point or missing values. .,

