
Chapter 9: Creating

and Using Macro

Programs

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Definition

MACRO (noun)

Etymology: short for macroinstruction

Date: 1959

: a single computer instruction that stands

for a sequence of operations

Retrieved from www.m-w.com

http://www.webster.com/

3

Macro Programs (a.k.a. Macros)

◼ Macros enable text substitution into programs.

◼ Unlike macro variables, macros can use conditional

logic.

◼ Programs can become more dynamic and reusable,

shorter, and easier to follow.

◼ It is useful for automation. Repetitive tasks can be

performed quickly and efficiently. Macros can generalize

the same or similar code. Parameters can be passed to

the macro so that the macro itself does not have to be

changed prior to execution.

◼ It can help towards modular programming. Referencing

a macro is similar to calling a subroutine. The main

program can become more readable.

4

What is the SAS Macro Facility?

◼ It is a tool for text substitution that is

meant to assist you in constructing

your programs. The facility is part of

base SAS. It has its own language

that is different from that used in

base SAS, but the two languages

have similar conventions and syntax.

5

What are the potential

disadvantages of using the SAS

Macro Facility?

◼Used a certain way, macros can

make your programs harder to read.

◼Sharing macro programs with users

who do not use macros has its

challenges.

6

What are the SAS Macro Facility’s

two components?
◼ The macro processor compiles macros and

integrates it with the SAS job.

◼ The macro language is the interface between the

programmer and the processor.

◼ The macro language statements instruct the

macro processor how to substitute text for you or

how the facility should create the statements for

you. After writing a macro, the macro is executed

by invoking it instead of manually modifying the

statements in a non-macro program prior to

execution.

7

How is the macro processor triggered

in a SAS program?
◼ &varname

This is a reference to the macro variable named

varname. The current value of the macro variable

will replace all references of &varname in the

program.

◼ %macroname

This is a reference to the macro named macroname.

This generates statements (with or without errors)

that are contained in the macro. The contents of the

macro are still subject to debugging by the user.

8

How do I use SAS macros?

◼The first step is to create macro

statements/code.

◼The second step is to invoke the

macro statements/code.

9

Defining a Macro

◼The definition begins with

%MACRO and ends with %MEND.

◼Example:
%macro printsubset(gender,titletext);

proc print; where female="&gender";

title "&titletext";

run;

%mend printsubset;

10

General Syntax
%MACRO macro-name;

text

%MEND <macro-name>;

◼ macro nameis any valid SAS name but not a

reserved word in the SAS macro facility

◼ textis:

– constant text, possibly including SAS data set names,

SAS variable names, or SAS statements

– macro variables, macro functions, or macro program

statements

– any combination of the above

11

Compiling a Macro
◼ After submitting the macro definition, the macro scanner

goes through it and sends it to the macro processor.

The macro processor:

◼ Checks for macro language syntax errors (non-macro

language statements are NOT checked until AFTER the

macro is executed)

◼ Writes error messages to the SAS log and creates a

dummy (non-executable) macro if there are errors

◼ Stores the macro for later use if there are no errors. Stores

all compiled macro language statements and constant text

in a SAS catalog (default is Work.Sasmacr catalog) under

an entry called macro-name.Macro.

12

The MCOMPILENOTE Option

This option will write a note in the SAS log when a

macro has completed compilation.

OPTIONS MCOMPILENOTE= NONE | NOAUTOCALL | ALL;

◼ Default NONE (no notes written to the log)

◼ NOAUTOCALL (notes to log about completed macro
compilation except for AUTOCALL macros)

◼ ALL (notes to log about all completed macro compilation)

13

Calling a Macro
◼ After compilation, the macro can be called for the

duration of the SAS session without resubmitting

it.

Macro calls:
◼ are specified by placing a percent sign (%) before the name of the

macro

◼ can be made anywhere in a program except within the data lines of a

DATALINES statement

◼ do not require semicolons (Macro calls are not SAS statements)

Example: %printsubset calls the macro named printsubset

14

Macro Execution

◼ Word scanner passes macro call to macro

processor, which searches the SAS catalog

(usually WORK.Sasmacr) for the macro.

◼ Compiled macro language statements are

executed

◼ Non-macro text is scanned

◼ Macro execution is halted at end of SAS step, and

SAS code is executed

◼ Macro execution is resumed

15

Developing and Debugging Macros

◼A number of SAS system options are

available.

–MPRINT Option

–MLOGIC Option

◼Comments can be added to the

program

16

The MPRINT Option

This option shows in the SAS log the code that

results from the macro.

OPTIONS MPRINT | NOMPRINT;

◼ MPRINT (displays statements generated by macro
execution-- statements are useful for debugging
macros)

◼ default NOMPRINT (does not display statements
generated by macro execution)

17

The MLOGIC Option

This option prints messages that indicate macro

actions that were taken during macro execution.

OPTIONS MLOGIC | NOMLOGIC;

◼ MLOGIC (messages about macro actions are
printed in the log during macro execution)
debugging

◼ default NOMLOGIC (messages about macro

actions are not printed in the log)

18

The Macro Comment Statement

Macro comments are not part of the code that

results after the macro is compiled. Regular SAS

comments are.

%*comment;

◼ comment is any message

◼ The statement ends with a semi-colon.

19

Using Macro Parameters

A parameter list is an optional part of the %MACRO

statement that names one or more macro variables

whose values are specified upon calling the macro.

Example:
The

%macro printsubset(gender,titletext);

proc print; where gender="&gender";

title "&titletext";

%mend printsubset;

The macro prints the variables for records with the
specified gender and titletext macro variable values.

20

General Syntax for %MACRO

Statement

%MACRO macro-name <(parameter-list)></ option-
1 <...option-n>>;

◼ macro-name names the macro (a SAS name that
is not a reserved word in the macro facility)

◼ parameter-list names one or more local macro
variables whose values are specified when the
macro is invoked (Macro parameters are separated
by commas and can be referenced in the macro.)

21

Syntax for Macros with Positional

Parameters
%MACRO macro-name

(positional-parameter-1 <. . . ,positional-parameter-n>)

text

%MEND macro-name;

◼ Parameters can be in any order.

◼ Macro invocation must have them in the same order as
they appear in the %MACRO statement.

◼ Separate more than one parameter with commas.

◼ If an invocation does not supply a value for a positional
parameter, a null value is assigned to that parameter.

22

Syntax for Macros with Keyword

Parameters
%MACRO macro-name

(keyword-parameter=<value><. . . ,keyword-parameter-
n=<value>>)

text

%MEND macro-name;

◼ Keyword parameters name one or more macro parameters
followed by equal signs. Default values can follow the
equal signs. An omitted default value is the null value.

◼ Override a default value by specifying the macro variable
name followed by the equal sign and new value in the
invocation.

23

Syntax for Macros That Include Mixed

Parameter Lists
%MACRO macro-name

(positional-parameter-1 <. . . ,positional-parameter-n>,

keyword-parameter=<value><. . . ,keyword-parameter-
n=<value>>)

text

%MEND macro-name;

◼ Parameter lists can consist of both positional and
keyword parameter lists.

◼ Positional parameters must be listed first before
any keyword parameters.

24

Syntax for Macros That Include the

PARMBUFF Option

%MACRO macro-name /PARMBUFF;

text

%MEND macro-name;

◼ PARMBUFF option creates an automatic macro variable

SYSPBUFF to define a macro that accepts a varying

number of parameters each time you call it.

◼ SYSPBUFF has the value of the list of parameters
separated by commas and all enclosed in parentheses.

◼ text contains a reference to the automatic macro variable
SYSPBUFF

25

The Global Symbol Table

◼ The table is created during the initialization of a SAS
session and is deleted at the end of the session. The table
contains global macro variables that:

– are available any time during the session

– can be created by a user

– have values that can be changed during the session (except for
some automatic variables)

◼ Create a global macro variable with:

– a %LET statement (used outside a macro definition)

– a DATA step that contains a SYMPUT routine

– a DATA step that contains a SYMPUTX routine

– a SELECT statement that contains an INTO clause in PROC SQL

– A %GLOBAL statement

26

The %GLOBAL Statement

The %GLOBAL statement:
◼ Creates one or more macro variables in the global symbol table and

assigns null values to them

◼ Can be used either inside or outside a macro definition

◼ Has no effect on variables that are already in the global symbol table

%GLOBAL macro-variable-1 <...macro-variable-n>;

◼ macro-variable-1 <...macro-variable-n>is the
name of one or more macro variables or a text
expression that generates one or more macro
variable names

27

The Local Symbol Table

◼ When a macro variable is in a local symbol table, it is
available only during execution of the macro in which it is
defined.

◼ The local symbol table contains macro variables that can
be:

– created and initialized at macro parameter invocation

– created or updated during macro execution

– referenced anywhere within the macro

◼ Create a local macro variable within a macro definition:
– parameters in a macro definition

– a %LET statement within a macro definition

– a DATA step that contains a SYMPUT routine within a macro definition

– a DATA step that contains a SYMPUTX routine within a macro definition

– a SELECT statement that contains an INTO clause in PROC SQL within a
macro definition

– A %LOCAL statement

28

The %LOCAL Statement

The %LOCAL statement:
◼ Can appear only inside a macro definition

◼ Creates one or more macro variables in the local symbol table and assigns null
values to them

◼ Has no effect on variables that are already in the local symbol table

%LOCAL macro-variable-1 <...macro-variable-n>;

◼ macro-variable-1 <...macro-variable-n>is the
name of one or more macro variables or a text
expression that generates one or more macro
variable names

29

Multiple Local Symbol Tables

◼ Multiple local symbol tables can exist concurrently
during macro execution if there are nested
macros. If a macro program calls another macro
program, and if both macros create local symbol
tables, then two local symbol tables will exist while
the second macro executes.

30

The MPRINTNEST Option

This option allows the macro nesting information to be written

to the SAS log in the MPRINT output. This has no effect on

the MPRINT output that is sent to an external file. MPRINT

and MPRINTNEST must both be set in order for the output to

be written to the log.

OPTIONS MPRINTNEST | NOMPRINTNEST;

◼ MPRINTNEST specifies that macro nesting information is
written in the MPRINT output in the log

◼ NOMPRINTNEST specifies that macro nesting information

is not written in the MPRINT output in the log

31

The MLOGICNEST Option

This option allows the macro nesting information to be

displayed in the MLOGIC output in the SAS log. The setting

does not affect the output of any currently executing macro.

OPTIONS MLOGICNEST | NOMLOGICNEST;

◼ MLOGICNEST specifies that macro nesting information is
written in the MLOGIC output in the log

◼ NOMLOGICNEST specifies that macro nesting information
is not written in the MLOGIC output in the log

32

Processing Statements Conditionally

%IF-%THEN/%ELSE Statement

%IF expression %THEN action;

<%ELSE action;>

◼ expressionis any macro expression (constant text, a text expression, a
macro variable reference, a macro call, or a macro program statement)
that resolves to an integer.

◼ Comparisons are case-sensitive.

◼ If the expression resolves to an integer other than zero, the expression
is true and the %THEN clause is processed.

◼ If the expression resolves to zero, then the expression is false and the
%ELSE statement, if any, is processed.

◼ If the expression resolves to a null value or a value with nonnumeric
characters, the macro processor issues an error message.

◼ %IF comparisons are case-sensitive.

33

Processing Statements Conditionally

◼ Use %DO-%END with %IF-%THEN and %ELSE
statements in order to conditionally place text that
contains multiple statements onto the input stack.

%IF expression %THEN %DO;

text and/or macro language statements

%END;

%ELSE %DO;

text and/or macro language statements

%END;

◼ text and/or macro language statements is either constant
text, a text expression, and/or a macro statement.

34

Processing Statements Iteratively
%DO macro-variable=start %TO stop <%BY increment>;

text and macro language statements

%END;

◼ macro-variable is a macro variable or a text expression that generates
a macro variable name (functions as index that determines number of
loop iterations)—If macro variable does not exist, it is created in the
local symbol table.

◼ start and stop are integers or macro expressions that generate
integers to help control the total number of iterations

◼ increment is a positive integer (default is 1) that is added to the index
variable in each loop iteration (Increment is evaluated before the first
iteration of the loop and can’t be changed as the loop iterates.)

◼ The index variable is evaluated at the beginning of each loop. The loop
ends when the index variable first exceeds the stop value.

35

Using Arithmetic and Logical

Expressions the %EVAL Function

◼ The %EVAL function evaluates arithmetic and
logical expressions using integer arithmetic.

%EVAL (arithmetic or logical expression)

◼ Caution: Error messages are generated in the log
when the expression contains non-integer values.
The function does not convert a value that
contains a period to a number.

36

Using Arithmetic and Logical

Expressions the %SYSEVALF

Function

◼ The %SYSEVALF function evaluates arithmetic and
logical expressions using floating-point arithmetic.

%SYSEVALF (expression, <conversion-type>);

◼ The second parameter conversion-type is optional
and can be BOOLEAN, CEIL, FLOOR, or INTEGER.

◼ This is the only macro function that can evaluate
expressions with floating point or missing values.

