
Combining Data

Horizontally

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Terminology

◼ Table Lookup

◼ Base table

◼ Lookup tables

◼ Lookup values

3

Working with Lookup Values

Outside of SAS Data Sets

◼ Lookup tables are not necessarily SAS

data sets.

◼ The following techniques can be used to

hard-code lookup values into programs:

– IF-THEN/ELSE statements

– SAS arrays

– User-defined SAS formats

4

IF-THEN/ELSE Statement

◼ Advantages: easy to use and to

understand, versatile

◼ Disadvantages: Code requires

maintenance. Lookup values might

change. Number of statements might be

very large and create inefficiencies both in

execution and maintenance.

5

IF-THEN/ELSE Statement

Example

data new;

set old;

if id=1 then x=4;

else if id=2 then x=5;

else if id=3 then x=6;

ID X

1 4

2 5

3 6

6

SAS Arrays

◼ Lookup values can be hard-coded into the

program or read into the array from a data

set

◼ Array elements are referenced positionally

◼ Potential disadvantages: system memory

requirements, only returns a single value

per lookup operation, dimensions of the

array must be known at compile time

7

Scoring Example with

1-Dimensional SAS Array
Item 1 Item 2 Item 3

Response Variable r1 r2 r3

Answer Key B D C

data one;

input name $4. +1 (r1-r3) ($1.);

array answer {3} $1 _temporary_ ('B','D','C');

array response r1-r3;

score=0;

do _i_=1 to 3;

if answer{_i_}=response{_i_} then score+1;

end;

8

DATA Step match-merge

◼ Familiar technique from STAT 540

◼ Typically introduced as

– a one-to-one Outer Join

– A many-to-one match merge of summary

data

◼ Not appropriate for a many-to-many

match

9

DATA Step match-merge

◼ BY variables should match, but matching

can be done during execution.

proc sort data=a; by student;

proc sort data=b; by name;

data gradebook;

merge a(in=in_a) b(in=in_b

rename=(name=student));

by student;

if in_a and in_b; run;

10

DATA Step match-merge vs.

PROC SQL

◼ Match-merge

– Unlimited data sets

– More complex data management

◼ PROC SQL

– No pre-sorting

– No common variables

11

DATA Step match-merge vs.

PROC SQL

◼ Match-merge

– Portable Data Vector (PDV) used to hold

information while DATA step executes

– Outputs first observation from each data set

for each level of the BY group variable

◼ PROC SQL

– Creates Cartesian product

– Eliminates ineligible cases in WHERE clause

12

DATA Step match-merge

◼ The DATA step can be used for many-to-

one match merges

– By exporting calculation of summary

measures

– By computing summary measures within the

DATA step itself

– STAT 540 example

13

DATA Step match-merge

◼ The DATA step tends to over-match on

many-to-many match merges

◼ The text introduces a fix, but it’s

cumbersome

14

Using an Index to Combine Data

◼ Useful when

– One of the data sets is much larger than the

other

– The smaller data set contains all the cases of

interest (e.g., a left/right join)

◼ Appropriate for one-to-one matches only

15

Using an Index to Combine Data

◼ Example

– SAS uses the noobs index in Fall08 to find

lookup values in Fall10ms to match values of

the index.

– The smaller data set has to be included first

so that lookup values are available in the

PDV for use by the index.

– _IORC_ (Input/Output Return Code) indicates

whether a match for each record in the

smaller data set was found.

16

Using an Index to Combine Data

◼ Example

– Full Fall08 data set

– Fall10 Marine Science majors

proc sql; create index noobs on

fall08(noobs); quit;

data msretro;

set fall10ms;

set fall08 key=noobs;

run;

17

Using a Transactional Data Set

◼ The Base data set can be updated from a

lookup table

◼ Both data sets have to be sorted

◼ The lookup table can have missing values

for variables that are unchanged

◼ Be careful about “mixed” information (see

example)

