
Combining Data

Vertically

1

STAT 541

©Spring 2012 Imelda Go, John Grego, Jennifer Lasecki and the University of South Carolina

2

Combining Data Vertically

◼ Process of concatenating or interleaving data

ID Name

9 Abe

10 Burt

ID Name

7 Chuck

8 David

ID X

9 Abe

10 Burt

7 Chuck

8 David

3

Examples of Concatenating Data

Vertically

◼ Create a SAS data set from multiple raw data

files using a FILENAME statement

◼ Create a SAS data set from multiple raw data

files using an INFILE statement with the

FILEVAR= option

◼ Append SAS data sets using the APPEND

procedure

4

Using a FILENAME Statement to

Concatenate Raw Data Files

◼ Assign a single fileref to the raw data files that

need to be combined

◼ All of the file specifications must be enclosed in

one set of parentheses

FILENAME fileref (’external-file1’ ’external-file2’

… ’external-filen’);

5

Example of Using a FILENAME

Statement to Concatenate Raw

Data Files

filename qtr1 (‘c:\ ...jan.txt’ ‘c:\...feb.txt’

‘c:…mar.txt’);

data all;

infile qtr1;

input x y z;

run;

6

Using an INFILE Statement to

Concatenate Raw Data Files

◼ Concatenation process can be more flexible by

using an INFILE statement with the FILEVAR=

option

◼ FILEVAR= option can dynamically change the

currently opened input file to a new input file

7

Using an INFILE Statement to

Concatenate Raw Data Files

INFILE file-specification FILEVAR=variable;

◼ file-specification is a placeholder (not an actual

filename or fileref assigned previously to a file)

◼ variable contains a character string that is a

physical filename for an input file to be opened

◼ FILEVAR=variable causes the INFILE statement

to close the current input file and open a new

input file whenever the value of variable

changes

8

Assigning the Names of the Files to

Be Read

data combined;

do i = 1 to 3;

fname= ’c:\temp\year’ || put(i,1.) || ’.dat’;

infile datafiles filevar=fname;

input x y z;

end;

… *program incomplete;
i fname

1 c:\temp\year1.dat

2 c:\temp\year2.dat

3 c:\temp\year3.dat

9

Example of Using an INFILE

Statement to Concatenate Raw

Data Files

data combined;

do i = 8, 9, 10;

fname= ’c:\temp\year’ || put(i,2.) || ’.dat’;

infile datafiles filevar=fname;

input x y z;

end;

… *program incomplete;

Note: There is a space before 8 and 9 in fname.

i fname

1 c:\temp\year 8.dat

2 c:\temp\year 9.dat

3 c:\temp\year10.dat

10

Example of Using an INFILE

Statement and the COMPRESS

Function to Concatenate Files
data combined;

do i = 8, 9, 10;

fname= compress(’c:\temp\year’ || put(i,2.) || ’.dat’);

infile datafiles filevar=fname;

input x y z;

end;

… *program incomplete;

Note: The COMPRESS function, as shown,
removes the space before 8 and 9 in fname.

i fname

1 c:\temp\year8.dat

2 c:\temp\year9.dat

3 c:\temp\year10.dat

11

COMPRESS Function

(with One or Two Arguments)

◼ Eliminates the specified characters in a string

COMPRESS (source, <characters-to-remove>);

◼ 1st argument: source specifies a string

◼ 2nd argument: optional characters-to-remove specifies
the character or characters that SAS removes from
source

◼ When the second argument is not used,
COMPRESS(source) removes blanks from the source

◼ Note: The function has an optional third argument called modifiers.
Refer to the SAS manuals for complete syntax.

12

Preventing an Infinite Loop of the

DATA Step
data combined;

do i = 1 to 3;

fname= ’c:\temp\year’ || put(i,1.) || ’.dat’;

infile datafiles filevar=fname;

input x y z;

output;

end;

stop;

… *program incomplete;

i fname

1 c:\temp\year1.dat

2 c:\temp\year2.dat

3 c:\temp\year3.dat

13

Using the END= Option to Complete

the Programming Statements
data combined;

do i = 1 to 3;

fname= ’c:\temp\year’ || put(i,1.) || ’.dat’;

do until (lastobs);

infile datafiles filevar=fname end=lastobs;

input x y z;

output;

end;

end;

stop;

run;

i fname

1 c:\temp\year1.dat

2 c:\temp\year2.dat

3 c:\temp\year3.dat

14

Using the END= Option

INFILE file-specification END=variable;

◼ variable names a variable

◼ The variable is set to 0 when the current input

data record is not the last record in the input file

◼ The variable is set to 1 when the current input

data record is the last record in the input file

15

Using the END= Option to Complete

Programming Statements

◼ The DATA step normally stops when SAS reads past

the last record in a raw data file.

◼ In the concatenation example, SAS needs to read till the

last record in the first two data files but not past the last

record. Doing so will cause the DATA step to stop

processing.

◼ The INFILE statement’s END= option determines when

the last record is being read.

◼ The END= variable is not written to the data set and its

value can be tested within the DATA step.

16

Using Date Functions to Automate

DO

◼ TODAY() returns the current date from the system clock

as a SAS date value

◼ MONTH(TODAY()) returns the month (1 to 12) from

TODAY()

◼ MONTH(TODAY()) – 1 is the month prior to

MONTH(TODAY()) (can cause a problem when

MONTH(TODAY()) is 1)

◼ MONTH(TODAY()) – 2 is two months prior to

MONTH(TODAY()) (can cause a problem when

MONTH(TODAY()) is 1 or 2)

17

INTNX Function

◼ The INTNX function increments a date, time, or datetime

value by a given time interval, and returns a date, time,

or datetime value.

INTNX(interval<multiple><.shift-index>, start-from,
increment<, ’alignment’>)

◼ interval specifies a character constant, variable, or
expression that contains a time interval (e.g., month)
and can appear in upper or lower case. The interval
must match the type of value used for start-from and
increment. (The values of interval are listed in the “Intervals

Used with Date and Time Functions” table in SAS Language
Reference: Concepts.)

18

INTNX Function (continued)

INTNX(interval<multiple><.shift-index>, start-from,
increment<, ’alignment’>)

◼ optional multiple is an optional multiplier that sets the
interval equal to a multiple of the period of the basic
interval type (e.g., the interval YEAR2 consists of two-
year, or biennial, periods)

◼ optional shift-index is a shift index that shifts the
interval to start at a specified subperiod starting point
(e.g., YEAR.7 specifies yearly periods shifted to start on
the first of July of each calendar year and to end in June
of the following year)

19

INTNX Function (continued)

INTNX(interval<multiple><.shift-index>, start-from,
increment<, ’alignment’>)

◼ start-from specifies a SAS expression that represents a
SAS date, time, or datetime value that identifies a
starting point.

◼ increment specifies a negative, positive, or zero integer
that represents the number of date, time, or datetime
intervals. Increment is the number of intervals to shift
the value of start-from.

◼ Optional ’alignment’ controls the position of SAS dates
within the interval and must be enclosed in quotation
marks.

◼ See SAS manuals for detailed explanation.

20

Appending SAS Data Sets with

PROC APPEND

PROC APPEND BASE=SAS-data-set DATA=SAS-data-set;

◼ The BASE= data set is the data set to which
observations are to be added to.

◼ The DATA= data set contains the records that will be
appended to the BASE= data set.

◼ The BASE= data set may contain more variables than
the DATA= data set. When that happens, missing
values will be assigned to the additional variables for
the observations in the DATA= data set. A warning
message will also appear in the SAS log.

21

Appending SAS Data Sets with the

SET Statement

Example:

data first; set second third; **overwrites second and third
on existing data set first;

◼ If there are several data sets listed, the result will be
the concatenation of all the data sets listed.

◼ The SET statement reads all observations in all the
listed input data sets in order to concatenate them. The
more efficient PROC APPEND reads only the data in the
DATA= data set.

22

Appending SAS Data Sets with PROC

APPEND and the FORCE Option

PROC APPEND BASE=SAS-data-set DATA=SAS-data-set
<FORCE>;

◼ When the DATA= data set contains more variables than the
BASE= data set, use the FORCE option to concatenate.

◼ The structure of the BASE= data set will be used for the
appended data set, which could lead to loss of data due to
dropping of variables. Variables in the DATA= data set but
not in the BASE= data set will be dropped.

23

Appending SAS Data Sets with PROC

APPEND and the FORCE Option

(continued)

◼ The structure of the BASE= data set will be used for the
appended data set, which could lead to loss of data due to
truncation.

◼ VARIABLES WITH DIFFERENT LENGTHS: If the same
variable is on both data sets but has a shorter length in the
BASE= data set, then the variable values in the DATA=
data set will be truncated in the appended data set. The
variable label from the BASE= data set will be retained
instead of the one from the DATA= data set.

24

Appending SAS Data Sets with PROC

APPEND and the FORCE Option

(continued)

◼ The structure of the BASE= data set will be used for the
appended data set.

◼ VARIABLES WITH DIFFERENT TYPES: If a variable is on
both the BASE= and DATA= data set but has different
types, a type mismatch will require the use of the FORCE
option to include the said variable in the appended data
set. However, the values for the said variable in the DATA=
data set records appended will be set to missing. The
variable values in the BASE= data set will be intact.

25

Append Raw Data Files Using a SAS

Data Set with Names of Files to

be Appended

data combined;

set sasuser.rawdata;

infile in filevar=filename end=lastfile;

do while(lastfile=0);

input x y z;

output;

end;

run;

obs filename

1 c:\temp\year1.dat

2 c:\temp\year2.dat

3 c:\temp\year3.dat

26

Append Raw Data Files Using an

External File with Names of Files

to be Appended
data combined;

infile ’rawdatafiles.dat’;

input filename $20.;

infile in filevar=filename end=lastfile;

do while(lastfile=0);

input x y z;

output;

end;

run;

obs filename

1 c:\temp\year1.dat

2 c:\temp\year2.dat

3 c:\temp\year3.dat

