
Chapter 14: Dynamic and Customized Data Graphics

▶ In Chapters 2 and 3, a large number of commonly used static
graphical methods were discussed.

▶ In Chapter 14, we explore more advanced graphics.

▶ A static graph is a fixed, unchanging display of data
information.

▶ Static graphs are well suited for publication in printed articles.

▶ Dynamic data graphics have to ability to change, either
automatically or based on user control.

▶ Dynamic graphics are well suited for display on computers,
tablets, smartphones, etc., where changes in the graphical
output can be shown in real time.



A Few Uses of htmlwidgets

▶ With modern Web browsers, it is possible to have interactive
data visualizations directly within web browsers.

▶ Dynamic data graphics on the Web can be facilitated with a
JavaScript library called D3.

▶ The htmlwidgets package is a bridge between R and D3, so
that R users can use D3 without needing to learn JavaScript.

▶ All of these htmlwidgets plots that follow are automatically
interactive.

▶ The leaflet package has become popular for making
dynamic geospatial maps — it is covered in Chapter 17 of the
textbook.



Dynamic Data Visualizations using plotly

▶ The plotly package allows R users to take advantage of the
functionality of the plotly.js JavaScript library.

▶ You can convert any ggplot2 object into a plotly object
using the ggplotly function.

▶ From there, the user can immediately have interactive tools
such as:

1. brushing (highlighting/marking selected points)
2. mouse-over annotations (where additional information is

displayed when you hover over points with the mouse)
3. zooming (showing close-up displays of selected portions of the

graph)

▶ See the example from the textbook with the Beatles names
plot.



Interactive DataTables, Dygraphs, and Streamgraphs

▶ The DT package allows the creation of interactive data tables.

▶ These tables are automatically searchable, sortable, and
pageable.

▶ The dygraphs package produces interactive time series plots.

▶ With dygraphs, we can brush over and easily select particular
time intervals and zoom in and out on the plot.

▶ The streamgraph package can be installed with the
install github function in the remotes package.

▶ The streamgraph uses area rather than magnitude to display
values over time.

▶ See examples of these types of tables and graphs using the
Beatles names plot.



Animation in Plots

▶ The gganimate package is convenient for producing animated
plots that show as GIFs that change rapidly over time.

▶ When the information in a data set changes over time (or over
the values of some other variables), it is possible to illustrate
the changing picture with an animation plot.

▶ These appear like videos to our eye, since they are sequences
of static plots that are frames that flip quickly as the values of
the time variable change.



Customizing Animation Plots

▶ The transition time argument will specify the name of the
variable that is changing with the frames.

▶ If the plot is changing over levels of a discrete variable, the
transition states argument can specify the name of this
discrete variable.

▶ You can customize the number of frames and the transition
speed (frames per second) by creating a plot object and
inputting that object into the animate function and adjusting
the nframes and fps arguments.

▶ See the animation examples with the Beatles names and
gender-neutral names plots.



Dashboards and Shiny Apps

▶ Section 14.3 discusses using the flexdashboard package to
create visualizations as a dashboard, which mixes graphical
and textual information.

▶ This is best done in conjunction with R Markdown and
RStudio — we will not show it on the classroom computer.

▶ Section 14.4 presents the basics of Shiny apps.

▶ Shiny is a powerful framework that can create interactive web
applications (apps) and dynamic dashboards.



Creating and Running Shiny Apps

▶ The basic components of a Shiny app are:

1. a ui.R file with code that sets up and controls the user
interface of the app;

2. a server.R file with code that displays the results.

▶ These files can be stored in a folder on the local computer
and the source command will send the contents of the files
directly into R.

▶ Then calling runApp with the full directory path name will run
the app.

▶ See a simple Shiny app with the Beatles names and a more
complicated Shiny app with the New York City restaurant
data.



Customization of ggplot2 Graphics

▶ In ggplot2, a theme is a comprehensive customization of the
appearance of a plot.

▶ A theme contains over 100 attributes that define the
appearance of axis labels, titles, background colors, grid lines,
etc.

▶ The default theme in ggplot2 is theme grey.

▶ We can pull out and examine certain aspects of a theme using
pluck.

▶ There are many different built-in themes you can use in
ggplot2, including theme bw, theme minimal,
theme classic, etc.

▶ See examples of changing the appearance of the Beatles
names plot by using other themes.



Creating Your Own ggplot2 Theme

▶ With the theme function, you can create your own theme.
▶ You COULD write your own theme from scratch, specifying

ALL the attributes
▶ But it’s much easier to modify an existing theme using the

%+replace% operator.
▶ The textbook example creates a new theme called

theme mdsr.
▶ The choices of colors in R can be found by typing: colors()

or there are handy online cheat sheets showing all the colors
in R and their names.

▶ There are many different built-in themes you can use in
ggplot2, including theme bw, theme minimal,
theme classic, etc.

▶ The ggthemes packages has lots of specialized themes.
▶ See example of the Beatles names plot shown using

theme mdsr.



Figure 14.19

Figure: Nathan Yao’s New York Times Hot Dog Eating graphic: Figure
14.19 from MDSR textbook



Extended Example: Hot Dog Eating Graph

▶ Figure 14.19 shows a very complicated graph with lots of text,
color, lines, etc. created in Adobe Illustrator.

▶ In Section 14.6, an extended example shows how this graphic
can be (almost) replicated in R using ggplot2 and
tidyverse tools.



A Quick Note about Fonts

▶ Internally, R only has a small number of fonts.

▶ These depend on the system R is running under, but three
fonts (sans, serif, and mono, which are basically equivalent
to Helvetica, Times, and Courier) are always available in R.

▶ The extrafont package allows access to all the fonts on your
computer, not just the ones that R knows about.

▶ See Section 14.7 for a link to learn more about the
extrafont package.



A Quick Note about Math Expressions

▶ If you need to use mathematical notation and expressions in
your plot titles, axis labels, or text within plots, the
expression function will allow you to type fairly complicated
math expressions, Greek letters, etc.

▶ You can also mix plain text with mathematical expressions
using the paste function.

▶ See the brief R examples on the course webpage.


