
Chapter 15: Database Querying Using SQL

▶ Small data sets can easily fit in a computer’s memory.

▶ Medium data sets can fit on a computer’s hard disk, but
perhaps not in its memory.

▶ SQL (Structured Query Language) is a database querying
language developed in the 1970s that is ideal for retreiving
medium data from a database.

▶ SQL is so ideal for its purpose that it’s very commonly used
by data scientists (often data science job interviews include
quizzes about SQL queries).



From dplyr to SQL

▶ Considering the airline flight data, if we want to retrieve the
top on-time carriers with at least 100 flights arriving at JFK in
September 2016, we could write R code in dplyr using
functions like filter, inner join, summarize, and
arrange (see example code).

▶ However, the full flights data set has 169 million individual
flights (around 20 GB of memory).

▶ Difficult to store in R in the computer memory, so it’s better
to store data on disk or on a remote server.

▶ Then we can use querying statements to retrieve only the
rows we need.



tbl sql Objects

▶ The dbConnect scidb function from the mdsr package can
be used to connect to a remote server where the airlines data
sets are stored.

▶ Using the tbl function, we create an R object that is not
exactly a data frame, but rather a tbl sql object.

▶ When working with tbl sql objects, dplyr actually internally
converts the pipeline into an SQL query, which can be seen
explicitly with the show query function.

▶ Certain R functions (e.g., filter, n()) translate directly to
SQL operations (WHERE, COUNT(*)).

▶ The translate sql function translates simple R commands
into SQL commands (see examples).

▶ In fact, the dbplyr package is designed to take dplyr code
and make it work as SQL queries do.



Flat-file databases, Memory, and Disk Space

▶ A flat-file database consists of rows and columns of data,
usually with a header row of column names.

▶ Data in memory can be accessed at once and quickly, but
computers typically can hold only a few GB of memory.

▶ Data in the hard disk is stored permanently; it can be
accessed but much more slowly. Computers typically can hold
thousands of GB in hard disk space.

▶ All objects in the R workspace are stored in memory, so
dealing with very large data in R makes performance sluggish.

▶ It’s more efficient with large data sets to store them externally
and use relational databases.



Implementations of SQL

▶ SQL (Structured Query Language) is a programming language
developed in the 1970s for relational database management
systems.

▶ There are numerous implementations of SQL, such as SQLite,
MySQL, and even SAS’s PROC SQL.

▶ In these classroom examples, we will run the SQL queries in R
using the sqldf package.

▶ This doesn’t cover all the aspects of SQL, but it handles the
major querying tools.



Getting Started with SQL

▶ With SQL, there is a database server (which may be a remote
server) that stores the data and executes queries.

▶ Appendix F gives information about setting up a MySQL
database, but we will not cover that here.

▶ For the examples showing SQL queries, we will use a remote
SQL relational database, already set up and containing
multiple tables, using the airlines database from the
nycflights13 package.



SQL Queries

▶ Queries in SQL are the main way to access data.

▶ All queries start with the SELECT keyword and contain one or
more clauses.

▶ Many of the clauses have direct analogues in dplyr verbs.

▶ SELECT lists the columns that you want to retrieve (like
select in dplyr).

▶ SELECT * selects all the columns from a table — be careful
when doing this.

▶ You can also select functions or transformations of the
columns of a table (like with mutate in dplyr).



Other SQL Clauses

▶ FROM specifies the table from which you are selecting the
columns.

▶ WHERE allows you to pick only the records satisfying some
criteria (like the filter verb in dplyr).

▶ GROUP BY allows you to aggregate the records according to
some grouping variable (like the group by verb in dplyr).

▶ HAVING operates similarly to WHERE in that it filters results
based on some logical condition, but HAVING operates on the
result set rather than the records themselves.

▶ So HAVING is a filter applied after the rows have already been
aggregated via GROUP BY.

▶ ORDER BY specifies a condition for ordering the rows of the
result set (like the arrange verb in dplyr).

▶ LIMIT restricts the number of rows that are printed in the
output (like head or slice in R).



Basic SQL Queries

▶ The only required clauses in a query are SELECT and FROM.

▶ The other clauses are optional.

▶ Typically, SQL queries end in a semicolon (although if we run
them with sqldf in R, the query is quoted, so that the
semicolon is not needed).

▶ The clauses don’t have to be on different lines, although it
can make long queries more readable if you place the clauses
on different lines.

▶ The keyword AS allows you to specify a column name in the
result set that is different from the column name in the
original table.

▶ See the examples of basic queries on the airlines data set.



The WHERE Clause

▶ Using the WHERE clause, we can retrieve only the data records
that meet a certain condition.

▶ This could be a compound condition, specified with AND and
OR keywords.

▶ Besides equality (or inequality) conditions, we can use
BETWEEN or IN keywords to specify that we want records with
values between two values or in some list of values.

▶ When using AND and OR keywords, be careful: The criteria in
the WHERE clause are not evaluated left to right, but rather
the ANDs are evaluated first, before the ORs.

▶ Use parentheses, where needed, to guide the query about
which conditions to evaluate first (see examples).



The GROUP BY Clause

▶ The GROUP BY clause allows you to aggregate rows so that
the output has results given for the distinct levels of some
grouping variable.

▶ You must use an aggregate function when using GROUP BY.

▶ Some aggregate functions in SQL are COUNT(), SUM(),
MIN(), MAX(), and AVG().

▶ See examples on the airlines data.



The ORDER BY Clause

▶ The ORDER BY clause can take the output and order the rows
by some variable.

▶ Using the DESC keyword after the variable name will return
the rows in descending order of that variable, rather than in
ascending order which is the default.

▶ If the variable is a character variable, the ordering will be
alphabetical.

▶ ORDER BY may be used in a query either with or without a
GROUP BY clause.



The HAVING Clause

▶ The HAVING clause will filter the result set based on some
specified condition.

▶ Note that WHERE operates on the original data in the table
and HAVING operates on the result set.

▶ The implementations MySQL and SQLite allow you to use
derived column aliases in HAVING clauses, but not all SQL
implementations support this.

▶ You cannot move the conditions that operate on the result set
from the HAVING clause to the WHERE clause — this will give
an error.

▶ You can move the conditions that operate on the original data
from the WHERE clause to the HAVING clause, but this will
result in a loss of efficiency since the aggregation will be
performed on all the records.

▶ See examples of the correct use of WHERE and HAVING.



The LIMIT Clause

▶ A LIMIT clause truncates the output to a specified number of
rows (like the head or slice functions in R).

▶ The first number in the LIMIT clause indicates the number of
rows to skip, and the latter number gives the number of rows
to retrieve.

▶ So which rows will be returned if we use the following?

▶ LIMIT 5, 10

▶ LIMIT 0, 4



Joining Tables in SQL

▶ Recall that several joining operators were available in dplyr,
such as inner join, left join, etc.

▶ In SQL, we can similarly join tables using the JOIN keyword.
▶ We must specify:

1. the name of the first table to join
2. the type of join
3. the name of the second table to join
4. the condition on which to join (the ON condition)



Types of Joins

▶ The types of joins available differ across SQL implementations.

▶ The basic JOIN keyword will do an inner join, which will
include all records that are in both tables.

▶ LEFT JOIN will include all the records in the first table, and
records that have no match in the second table will have
missing values in the resulting joined table for the columns
that appear only in the second table.

▶ RIGHT JOIN will include all the records in the second table,
and records that have no match in the first table will have
missing values in the result.



Other Types of Joins

▶ The CROSS JOIN is a combination of every row from the first
table with every row from the second table to form the result
set.

▶ If the first table has n rows and the second table has m rows,
the result set from the CROSS JOIN will have n ×m rows.

▶ The CROSS JOIN is mainly useful to create a large table on
which to do further processing.

▶ The FULL JOIN, also called FULL OUTER JOIN, is available in
some SQL implementations but not all of them.



Flights and Airports example

▶ The flights table contains information on individual flights,
including the departure airport and destination airport.

▶ However, the airports are only identified with their three-letter
FAA codes.

▶ It may be desirable to have the full airport name in a table
with the flight information.

▶ The airports data set has both a column with the FAA code
and a column with the full airport name.

▶ We can join the flights and airports tables to get all the
information we need in one table.

▶ See examples of an inner join (and of a left join that includes
some flights to destinations that are not in the airports
table).



Table Aliases

▶ We have seen the use of column aliases, in which we rename
(using the AS keyword) a column in the result table to make
the column header more descriptive.

▶ We can also make code for joins more readable by using table
aliases.

▶ Customarily, table alias is a single letter following the AS that
can later be used as a shortcut reference for the table name.

▶ Note that in SQL, we often refer to a column using both the
table alias and the column name.

▶ For example: We create the table alias via flights AS o and
then refer to the dest column in flights using o.dest in
the ON condition.

▶ This is very useful when columns in two different tables have
the same name, i.e., ON a.idnumber = b.idnumber where
idnumber is the column name in both tables a and b.



Joining Multiple Tables

▶ We can join more than two tables together using multiple
JOIN clauses.

▶ In the airlines example, the airline carriers have codes, but the
airlines table has information on the full airline names
associated with these codes.

▶ Joining the flights, airports, and airlines tables will
allow us the have information on individual flights, full airport
names, and full airline names all in one table.

▶ Why not simply store the whole airport and airline names in
the flights data table instead of codes, if we’re going to
need the names?



More on Joining Multiple Tables

▶ Storage reasons: 169 million rows in flights —
abbreviations take up less space.

▶ Also, airport names could change in the future, but FAA
codes are permanent.

▶ We can also join with the same table twice in one SQL query:
We must give the table different aliases in the different JOIN
clauses.

▶ In that case, using table aliases becomes necessary.

▶ See examples with the flights data.



The UNION Keyword and Subqueries

▶ We can use the UNION keyword to bind together the records
from the results of two queries.

▶ We can also do a query on the result set from a previous
query.

▶ The initial query is called a subquery and is typically set apart
with parentheses.

▶ See examples with the flights data where a subquery produces
a list of values that are used in a subsequent query.



Thoughts on R and SQL

▶ Many common tasks can be performed with either tools in the
R package dplyr or with SQL queries.

▶ R will typically be preferred with smaller data sets, since it has
many more statistical functions available.

▶ SQL is preferred if the data set is large enough that it does
not fit easily in the computer’s memory, but SQL has only the
most rudimentary functions for data analysis.

▶ Overall, SQL shines in data management, while R is better for
data analysis, so it is helpful for a data scientist to be familiar
with both.


