Chapter 19, Part 2: More About Text as Data

» Beyond parsing and searching through text documents, there
are a number of graphical displays and summarizations of large
sets of text data that have been developed in recent years.

» We will study some of these tools on several example
documents and collections of documents.

> We begin with an extended example from Section 19.2 on a
large collection of research papers.



Extended Example: Data Science papers in the ArXiv

» The arXiv (pronounced “archive”) is a electronic repository
where scientists from various disciplines can upload preprints
of their research papers before they undergo peer review by a
journal.

» The R package aRxiv package provides an API for querying
the files and metadata available at the arXiv.

» The function arxiv_search allows you to search the arXiv
using search terms, years, etc.

P> The data set DataSciencePapers in the mdsr package
contains the results of such a search as of August 2020:

P It contains 15 variables measured on 1089 research papers.



The DataSciencePapers Data Set

> The key column id contains a unique identifier for every
paper in the data set.

» The column abstract contains the text of the abstract of
each paper.

» The variables submitted and updated give dates/times of
initial submission and last update of the paper.

P> These two variables are entered as character strings, so we
can use lubridate to convert these to date-time objects to
facilitate analysis (see example of summarizing submission
years for Data Science papers).

» The primary_category variable gives the topic area of each
paper, but some cleaning of this variable will make its values
more useful.

» Note that this DataSciencePapers data set is a corpus, a
collection of many text documents.



The tidytext Package and its Tools

» The tidytext package has some valuable tools for getting
text data ready to analyze closely.

> A token in text analysis is the smallest individual unit of text
that we care to analyze.

» The unnest_tokens function uses a tokenizer to break text
lines into tokens, which are typically individual words.

» By default, the function converts all characters to lowercase
as it does this, so that, for example, “The" is treated the
same as “the”.

» This allows us to calculate word frequencies for papers, or we
could choose other definitions of tokens like sentences or
“N-grams” (more on those later).



» We probably don't care much about very common,

inconsequential words like “a”, “the”, “from”, 'you”, etc.

» These are called stopwords and we often want to remove them
before doing an analysis on the individual words in a
document.

> The get_stopwords function from the tidytext package
makes use of the stopwords package to find the commonly
agreed-upon stopwords that are in the document.

» We can easily remove these from the text object using the
anti_join function and create a “clean” version of the text
object before further analysis.

» See examples on the DataSciencePapers data.



Word Clouds

» A simple visualization of the frequency of words in a
document is called a word cloud.

» This displays the most common words in the document, with
the most frequent being printed in larger font.

» The wordcloud package and function will produce a word
cloud, with various options for colors, size, number of words
shown, etc.

» See word cloud for the DataSciencePapers data.



Sentiment Analysis

» Word clouds show prevalence of words, but they don’t really
summarize the meanings of the words in the document.

» Sentiment analysis is a simple way to summarize how positive
or negative a written text is.

P It relies on a lexicon, which is a previously obtained collection
of words.

» Each word in the lexicon has been assigned a sentiment score
which is a numeric measure of how positive or negative a
word's sentiment is, based on the judgment of language
expert(s).

» There are several choices of such lexicons that have been
created.

» The AFINN lexicon from 2011 gives each word in the lexicon
an integer value, from —5 (most negative) to 5 (most
positive) — see example words from lexicon.



Using the Sentiment Scores in a Text Analysis

» We can join the lexicon and our text object and thus assign
sentiment scores to the words in our document (at least those
words that can be found in the lexicon).

» If words in our document are not in the lexicon, a left join will
allow them to appear in the joined data table with missing
(NA) sentiment scores that will count as zeroes when we sum
the sentiment scores in the text object.

» It's often most useful to calculate the sentiment per word of a
document rather than the summed sentiment score, so that
documents of varying lengths can be fairly compared.

> See the sentiment analyses of the abstracts in the
DataSciencePapers data.



Bigrams and N-grams

» Beyond analyzing individual words, we can analyze longer
sequences of words that appear in a document.

» An N-gram is a contiguous sequence of N words.

» So a l-gram is an individual word, and a 2-gram (more
commonly called a bigram) is a pair of consecutive words.

» By choosing a bigram or other N-gram as our token of choice
in unnest_tokens, we can explore which sequences of words
are most common in the document.

» Arguably, when dealing with longer N-grams, it may make
sense not to remove stopwords, since these could serve as
important connectors in longer phrases.

> See the analysis of bigrams in the DataSciencePapers data.



Document Term Matrices and Prevalence Measures

>

>

A document term matrix summarizes the prevalence of terms
(e.g., words) in a document using any of several measures.

The term frequency or tf of a term in some document is
formally a function tf(t, d) that counts the number of times a
term t appears in a document d, divided by the total number
of words in the document.

The inverse document frequency or idf measures how often a
term t appears in a collection of documents D.

The exact formula for the idf is given in Section 19.2.5.

If there are 50 documents in the collection and the term
appears in 10 of them, then idf(t, D) = log(50/10) = 1.61.

If there are 50 documents in the collection and the term
appears in 30 of them, then idf(t, D) = log(50/30) = 0.51.

So terms that appear in lots of documents have a lower idf.



The tf_idf Measure

» The term frequency - inverse document frequency or tf_idf
combines the tf and idf into one measure by multiplying them
together.

» Formally, this measure is tf_idf(t, d, D), a function of the
term t, the document d, and the collection of documents D.

P> A term that has a high tf.idf score within a document appears
in that document much more often than it appears in other
documents.

» Therefore, terms with large tf_idf scores in a document are
useful keywords for a document.

> Also, terms with large tf_idf scores are useful search terms
that will bring up that document quickly in a search.

» The bind_tf_idf function will calculate these measures (see
examples with the ArXiv collection).



Structure of the Document-Term Matrix

» In a document-term matrix (DTM), rows correspond to
documents in the collection and columns correspond to terms.

» For example, in the DataSciencePapers collection, there are
1089 documents (abstracts) and 12317 terms (words), so the
document-term matrix will have 1089 rows and 12317
columns.

» In the (/,j) element of the matrix, there is some measure of
prevalence of the jth term in the ith document.

» Often this might be a simple count of how many times the jth
term appears in the ith document.

» We could also choose that the elements in the matrix be any
of the previously discussed measures (tf, idf, or tf_idf ).



Working with the Document-Term Matrix

» The R function cast_dtm will calculate a DTM for a
collection of documents.

» It will give a measure of sparsity (how many of the entries of
the DTM are 0).

» If the sparsity is high (near 100%), then many terms do not
appear in most documents in the collection.



Summary Statistics from the DTM

> We typically would never print out the whole DTM, since it's
SO massive.

P Instead, we can examine summarizations, like looking at the
words with the largest prevalence values.

» We can also look at word correlations:

» For example, we can find words that have a high correlation
with the word causal — these are the words that tend to
appear in the same documents as causal does.

> See examples on the ArXiv collection.



Two More Extended Examples

» On the course website, there is code that performs text
analysis of an article | wrote that was published in a journal in
2024,

» For this example, we could analyze the text of the article as a
whole, or we can break the article into its sections and treat
the different sections as separate “documents”.

» Section 19.3 presents an example of scraping a website using
the rvest package to import an HTML-formatted table into
R and store it as an R data frame.

> The table has textual information containing titles of Beatles
songs and other variables characterizing the songs.

> After some preprocessing, we can use our text data analysis
tools to make some conclusions about the Beatles song titles
(see examples).



