
Chapter 5: Data Wrangling on Multiple Tables

▶ In Chapter 4, we learned about five key verbs used to alter,
adjust, or manipulate a single data table.

▶ In real data science, we often work with multiple data tables
which contain values on related or identical individuals.

▶ Think about the baseball example from last chapter:

▶ Suppose we had one table with batting data, another table
with pitching data, another table with fielding data, tables
with attendance data, financial data, etc.

▶ Different people may collect and update such different data
sets, and it may be inefficient or impossible to store it in one
large table.



Joining Tables

▶ To merge the information in different tables, we can use table
joins.

▶ Various functions in the dplyr package do various types of
joins: inner join, left join, right join, full join

▶ We need some key column (such as an ID column) that
uniquely identifies individuals across the data sets.

▶ Note that the merge function in base R does similar
operations using a bit different syntax.



Different Types of Joins

▶ We could perform an Inner Join, a Left Join, a Right Join, or
a Full (outer) Join.

▶ The inner join results in a table containing the cases that
appear in both tables that are being joined.

▶ The left join results in a table containing the cases that are in
both tables or just in the first table.

▶ The right join results in a table containing the cases that are
in both tables or just in the second table.

▶ The full join results in a table containing the cases that are in
either table (or in both tables).



Simple Examples of Joins

▶ See the simple example on the Math class and Reading class
tables.

▶ We see that some columns in the left, right, and full joins will
necessarily contain missing values, for the cases that did not
appear in one of the original tables.

▶ Note that when the name of the key column is different
between the first and second table, the name of the
corresponding column in the joined table is taken from the
first table.



The NYC Flights tables

▶ As a more realistic example, consider the flights table in
the nycflights13 package.

▶ It contains 336, 776 rows: Each row represents one commercial
flight from New York City (there are three airports in NYC).

▶ The carrier column contains the airline name, but only in
an abbreviated form.

▶ In the airlines data table, we have the carrier abbreviation,
plus the full airline name.



Example with the inner join function

▶ We can create a table of flights that contains both the
abbreviated carrier name and a full carrier name by doing an
inner join with: by = c("carrier" = "carrier")

▶ Since the key column has the same name in both tables, could
do: by = join by(carrier)

▶ Note in this example, the resulting table has the same number
of rows as the original flights table.



Example with the left join function

▶ We can create an airports pt data frame that contains
information about the airports that are in the Pacific time
zone.

▶ An inner join of flights with airports pt results in a table
with only the flights going to airports in the Pacific time zone.

▶ A left join of flights with airports pt results in a table
with all the NYC flights, but . . .

▶ . . . it contains airport information on only some of these cases
(only the flights going to airports in the Pacific time zone).

▶ Based on this, we can easily get counts of the number of
flights to the Pacific time zone and the number going
elsewhere, using summarize.



Checking the Results of Joins

▶ It’s always a good idea to check the dimensions (especially the
number of rows of your original table and of your joined table).

▶ Check for any cases of a row in one table matched to more
than one row in the other table.

▶ This can happen if the key column is a nonunique identifier,
such as a Name that could be shared by multiple individuals.

▶ You can join multiple tables in a similar way – can do it
efficiently using the pipe operators.



Extended Example

▶ See the extended example in Section 5.3 on the baseball data
in the Lahman package.

▶ This combines some tools learned in Chapter 4 for wrangling
data in one table with some of the Chapter 5 tools for
wrangling data in multiple tables.


