
Chapter 6, Part 1: Tidy Data

▶ In statistics class examples, data may be presented to students
in a form that is all ready for them to analyze.

▶ In the real world, data may be stored in formats that are not
immediately ready for data analysis.

▶ In this chapter, we will learn some data wrangling skills that
are valuable for working with data of unusual types or in
unusual forms, so that they can be prepared for analysis.

Example: Long and Wide Formats

▶ The Gapminder database is a well-known collection of data
measuring various variables on countries across time.

▶ Consider an example data set on HIV prevalence in several
countries over a set of different years.

▶ We could view this data set in “wide” format, in which each
row is a country, and the columns represent the prevalence of
HIV in that country for the series of years.

▶ Or we could view the data set in “long” format, where there is
a different row for each country-year combination, and there
are fewer columns.

▶ See examples for the HIV dataset.

Pros and Cons of Long and Wide Formats

▶ The wide format is a “spreadsheet-style” format, in which we
can more easily take in the whole data set at one glance.

▶ So visual inspection is easier with the wide format, since the
long format is typically too long to fit on one screen – we’d
have to keep scrolling down to see it all.

▶ However, it turns out that for many types of data analysis, it
is more convenient for the input data to be in long format.

▶ And when working with multiple tables, it is easier if they are
in long format.

▶ And it is easier to add variables to an existing data set if they
are in long format rather than wide, since it just entails
adding another column (as opposed to adding another sheet).

▶ In the era of big data, being able to see all the data at once is
often not realistic anyway.

Data Management Using Programming Rather than
Click-and-Drag Steps

▶ Don’t do your preprocessing of raw data using click-and-drag
operations within spreadsheet applications (like Excel).

▶ It’s very important that when you manage and preprocess
your data, that you do it through programming steps.

▶ This separates the raw data from the analysis.

▶ It makes your work reproducible — if the code is there, you
and others can do those steps later on that raw data file and
other similar/updated raw data files, without starting over
from scratch.

▶ Getting your data into a tidy data format is an important
concept in data preprocessing.

Tidy Data

▶ Tidy data are presented in an array of rows and columns.

▶ The rows, called cases or observations, each refer to a
specific, unique, and similar sort of thing, which we might call
an item. The columns, called variables, each have the same
sort of value recorded for each row.

▶ The variables are characteristics which are measured or
observed for each item.

▶ When data are in tidy form, it is easy to perform steps that
summarize useful information about the data.

▶ See the simple example on the babynames data set.

Example of a Data Set Not in Tidy Form

▶ Look at the summarized Minneapolis election data in Figure
6.1.

▶ Why is it not in tidy form?

▶ We must put it in tidy form before we write code to extract
summaries of information, produce graphical displays of the
data, etc.

▶ Data wrangling involves transforming information in a table
into a form where the information is explicitly seen.

▶ We learned several verbs for data wrangling in Chapter 4.

▶ Data that are coming from different sources can easily be
combined (such as using the joins we learned) if they are in
tidy form.

Figure 6.1

Figure: Figure 6.1 from MDSR textbook

Variables and Cases

▶ A variable is an observed characteristic of an observation that
varies from case to case.

▶ Variables could be categorical or numerical.

▶ A case is a row in the data set.

▶ Often it represents an individual person or thing, but with
repeated-measures data, measurements on the same individual
could be listed as several cases.

▶ See the ballot data (Table 6.4) and the road-race data (Table
6.5) for examples.

Codebooks for Data Sets

▶ A codebook is a documentation for a data set.

▶ It gives information about what the variables mean, how the
data were collected, what the different categories are for
categorical variables, etc.

▶ It gives more information than simple variable names can.

▶ It’s always good practice to include such documentation
about data sets so that humans can understand them.

▶ Codebooks for data tables in built-in packages are available
from the help function in R.

Reshaping Data

▶ Recall the differences between data in wide format and in long
format, and the advantages of each.

▶ With data in wide format, it is simple to create variables that
compare response values across time periods.

▶ With data in long format, it can be easier to add new
variables or combine information in multiple tables.

▶ There are some useful R functions for changing formats from
wide to long or from long to wide.

Blood Pressure Data Set Example

▶ See the blood pressure data sets in two formats: BP wide and
BP narrow.

▶ The pivot longer function in the tidyr package takes a
wide-format data set and converts it to a long-format data set.

▶ The pivot wider function in the tidyr package takes a
long-format data set and converts it to a wide-format data set.

Arguments in pivot wider

▶ There are two key arguments in the pivot wider function:

▶ values from argument: name of the variable in the narrow
format to be divided up into multiple variables in the resulting
wide format.

▶ names from argument: name of the variable in the narrow
format that identifies, for each case, which column in the wide
format will receive the value.

Arguments in pivot longer

▶ The key arguments in the pivot longer function:

▶ names to argument: defines variables from the wide form
that will become the categorical levels in the narrow form.

▶ values to argument: the variable that is to hold the values
in the variables being gathered – it should reflect what those
values actually represent.

▶ With pivot longer, we can specify which variables (like
subject IDs or names) should remain a variable in the narrow
format.

▶ See examples of transforming the blood pressure data set.

Working with List-Columns

▶ A common task with repeated-measures data is to perform
summary statistics on each subject (e.g., calculating
within-subject means for each subject).

▶ Using list-columns, we can obtain a data set whose rows are
the groups (i.e., subjects), but which also have the individual
measurement values, which we could do further analysis on.

▶ The nest function will collapse all the ungrouped variables
into a tibble, which is a simple type of data frame.

▶ A new variable is created which is a list – note that list
objects in R can be made up of elements that differ in
dimension and type.

▶ A variable in a data frame that has the type list is called a
list-column.

▶ The elements in the created list column are tibbles (which
may differ in size) containing the ungrouped variable values.

Getting Information Out of List-Columns

▶ How can we access the ungrouped variable values in the
list-column?

▶ The pull function can pull out these values, and using the
map function, we can apply the pull function to a specific
measured variable.

▶ The result will be a list object, and we can again use the map
function to perform calculations on this list.

▶ The unnest function can convert the nested list back into
numeric or ungrouped data.

▶ See the example of pulling out systolic blood pressure values
on the course website.

▶ The textbook has a short example of using pivot wider on
the babynames data frame when analyzing gender-neutral
names.

Naming Conventions in R

▶ When we create an object in R, like a vector, a data frame, its
columns, a function, etc., we give it a name.

▶ R has some rules about what kinds of names are allowed to be
given to objects.
1. The name cannot start with a digit.
2. The name cannot have any punctuation except the underscore

() or the period (.).
3. R names are case-sensitive, so Mydata and mydata would

NOT refer to the same object.

▶ It is recommended to use underscores rather than periods in
user-defined names, to avoid conflicting with internal R
functions, which often have periods.

▶ The creators of the tidyverse developed a style guide with
recommended usages and conventions, which the book
typically follows.

▶ For multiword object names, they use snake case, which uses
all lowercase letters and separates words with underscores.

