
Chapter 6, Part 2: Data Intake

▶ In many of the examples we’ve worked with in class, the data
sets are already in R, as built-in data sets or as part of a
package.

▶ Most data sets you will encounter outside a classroom are not
already in R.

▶ They are typically stored on the web, or in a directory on a
computer, or on a server or in the cloud, etc.

▶ They are likely in a different file format than R’s default data
format.

▶ Using such data in R requires such tasks as reading in a file (or
web scraping) and data cleaning to fix problems in the data.



The Native R File Format

▶ The usual format for data files already in R is the .rda
format, also suffixed .RData

▶ We can write an object to this file format using the saveRDS
function.

▶ To load an .rda file into the R environment, we use the
readRDS function.



Some Common Formats for Data Tables

▶ The format of a data file can also be inferred from the file
extension.

▶ The comma-separated values (.csv) format is a widely used
non-proprietary data format that just about any software
package can recognize.

▶ Many software packages (like Minitab, SAS, SPSS, etc.) have
data file formats specific to that package.

▶ Relational databases are common for storing institutional
records that are actively updated. These include business
transactions, government records, website logs, etc.

▶ The SQL language is ideal for querying such relational
databases.



Other Common Formats for Data Tables

▶ Excel is proprietary software for spreadsheets very common in
business settings.

▶ Google Sheets is a similar software for spreadsheets.

▶ Web-related data formats include HTML, XML, JSON – and
APIs, which are protocols for interacting with external data.



Reading External Data Files into R

▶ The best way to actually read external data into R depends on
the format.

▶ Often (not always), Excel spreadsheets and Google sheets can
be saved as .csv files, which makes it easier to read data into
software.

▶ Be careful – just because something is saved in a spreadsheet
doesn’t mean it’s a tidy data table.

▶ The readxl package is designed to read data from Excel into
R directly, and the googlesheets4 package is designed to
read data from Google Sheets into R directly.

▶ The packages dbplyr and DBI sometimes allow connection to
relational databases on remote servers.

▶ The readr package is a powerful package for reading .csv

files, and the rvest package is designed to read HTML tables.



Reading .csv Files into R

▶ “Comma-Separated Values” files have data values separated
by commas.

▶ A .csv file in a spreadsheet usually appears like an ordinary
spreadsheet of cells in rows and columns.

▶ If you view a .csv file in a text editor, you’ll see the commas,
and character data entries will be surrounded by quotation
marks (see simple baby names example).

▶ Other delimiters besides commas could be used to separate
data values, and the read.csv and readr::read csv

functions allow you to specify another delimiter other than the
default comma.

▶ The top row is usually a header with variable names, although
if the header row is missing, this can be specified in read.csv

and read csv .



Specifying the Location of the External Data File

▶ The R functions for reading external data files typically have a
file = argument where you can specify the location of the
file.

▶ This could be the complete path name to a location on your
local computer.

▶ It could also be a universal resource locator (URL), which is a
website address that includes the file name, if the file is on the
web.

▶ It’s possible to use a mouse-based selector to select your files,
especially in RStudio, or to use the menu options in R to
navigate to the directory where a file is.

▶ However, your code will be more reproducible and usable for
others if you are specific about the path to your files, e.g., by
including the full path name in your code.



Reading HTML Tables on the Web

▶ Webpages are HTML documents, and they often have data
displayed in a table using the <table> markup.

▶ We can use the rvest package in R to convert the HTML on
the webpage to an R structure and then convert the tables on
the webpage into R data tables.

▶ The read html function produces a list containing tables
taken from a webpage.

▶ The purrr::pluck function will extract any such tables from
this list, and the table can be stored as an R tibble.

▶ See the example on the course website with the mile world
record progression.



Application Programming Interface

▶ An Application Programming Interface (API) is a protocol for
interacting with data that you cannot control.

▶ Using APIs, you can access many publicly available data sets
from many sources.

▶ Sometimes accessing these require an ID name and access
key, which for many public APIs you can obtain for free.

▶ For many popular APIs, people have written R packages to
allow users to interface with the API.

▶ If there is not already a package for accessing data from an
API, then you have to look into the documentation of the API
to see how to call it yourself.

▶ See a brief example on the course web page with a Google
Trends API.



Data Cleaning

▶ Data cleaning refers to transforming data that is read in into
a format on which we can do statistical analysis.

▶ The times for the mile run in the world record progression
table are easily understandable to human eyes.

▶ But R will store the time values in a character vector, and we
will need to convert formats to be able to do statistical
analysis.

▶ Recoding categories that are coded using numerical codes is a
common type of data cleaning.

▶ The translation of how a code corresponds to a category may
be stored in a codebook, and the translations can be joined to
the original data table to allow the recoding.

▶ See the Saratoga houses example from the textbook.



Strings and Numbers

▶ Sometimes data whose meaning is numeric is stored as a
character vector.

▶ Other times, we wish treat data that is stored in a numeric
vector as a character string.

▶ The parse number function takes a character string with
numeric content and translates it into a numeric value.

▶ The parse character function takes a numeric
value/column and translates it into a character one.



Data Cleaning with Dates

▶ In raw data files, dates are usually stored as character strings,
like 2/12/2026 or 29 Feb 2008.

▶ Dates have an order, which is not the same as their
alphabetical order, that should be followed with doing a
statistical analysis.

▶ This is important, for example, when doing a time series plot
with dates on the x-axis.

▶ There are many custom functions in the lubridate package
that convert dates stored as character strings into usable date
(Date) or date-time (dttm) values.



Working with Dates

▶ Once properly stored, we can do sensible mathematical
operations on dates and times, such as using the interval
function to calculate differences in date or time values.

▶ We can also use functions like hour and month – and many
others – to extract parts of variables that are stored as dates
or times.

▶ See the Ordway birds example from the textbook and others
on the course webpage.



Factors and Strings

▶ A factor in R is a special type of object meant to contain
levels of a categorical variable.

▶ They allow customized ordering of the levels, which we have
seen, using, e.g., fct relevel.

▶ When reading data, it can be confusing whether character
data entries will be read in as factors or as character strings.

▶ By default, readr::read csv reads character strings as
strings, not factors.



More on Factors and Strings

▶ Some older versions of base R’s read.csv converts input
character data to factors, which often requires converting
them back for a character format with parse character.

▶ The forcats package has useful tools for wrangling factor
data.

▶ Be aware that some packages can be unpredictable in
formatting character input data as either character strings or
factors.

▶ To check the data types of the variables in your R data table,
use the summary, glimpse, or str functions.



Extended Example: Japanese Nuclear Reactors

▶ Section 6.4.4 has an extended example, especially dealing with
date and time data, on a Japanese nuclear reactor data set.

Figure: Figure 6.6 from MDSR textbook (the current version of this table
in Wikipedia is slightly different)


