
Chapter 7: Iteration

▶ One major reason to use programming languages is to
automate the process of doing iterative operations.

▶ It would be very tedious to re-run blocks of code many times
or to run similar blocks of code where very little changes in
the code from one run to the next.

▶ As an example, with the baseball data set, we might want to
do basically the same operation on the data for every season,
or to ask the same questions about each team in turn.

▶ Iteration allows us to write a small bit of code and then apply
that code repeatedly across teams, seasons, players, etc.

▶ In general, we can iterate the operation across members of any
subgroup of interest, or we can repeat the same code many
times, making random changes to the operation at each run.



Vectorized Operations

▶ To perform the same operation repeatedly on all the different
elements of a vector or on all rows (or columns) of a matrix or
data frame, a natural programming approach is to use a loop.

▶ In virtually every programming language, there is a capability
of writing loops.

▶ R is no different: Both for loop and while loop
constructions are available.

▶ However, since R naturally stores elements as vectors, in R
loops are much less efficient than vectorized operations.

▶ Vectorized operations take a vector as input, perform some
operation on every element in the vector, and return a vector
as the output.

▶ Similar operations can be performed on multidimensional
arrays like matrices.



Iteration using map functions

▶ Another way to iterate it to apply an R function to each
element of a vector (or each row or column of a matrix) using
one of the map functions from the tidyverse.

▶ The result is the collection of outputs from this repeated
application of the function.

▶ With map, the resulting collection of outputs is stored as a list.

▶ With map dbl, the result is a numeric (double) vector.

▶ map lgl, map int, map chr produce logical, integer, and
character vectors respectively.

▶ The base R analogue to the map family of functions is the
apply family of functions (which include lapply, tapply,
etc.).



Speed Advantage of Vectorized Operations

▶ When vectorized operations are possible, using vectorized
operations will typically be faster computationally than using
iteration and loops.

▶ See the example comparing computation time in R.

▶ In general, try to avoid writing loops in R if there is another
way to perform iterative operations.



Automated Iteration with across

▶ In a previous example, we looped over columns 15 to 40 to
calculate a bunch of column means.

▶ Writing programs with such magic numbers like 15 and 40
here could make the code less reproducible.

▶ For example, if new columns are added to the data frame, or
the operation is employed on another data frame, those
numbers 15 and 40 might be meaningless.

▶ The across adverb can apply verbs like summarize and
mutate to sets of variables that can be specified
programmatically rather than via magic numbers.



Using Predicate Functions

▶ Columns 15 through 40 were the numeric columns in the
Teams data frame, which is why we focused on those when
computing column means.

▶ We can pick out the numeric columns in across

programmatically using the predicate function is.numeric

along with where.

▶ When convenient, we could also specify the names of relevant
columns in across, or specify consecutive columns with the
colon symbol : in between two column names.

▶ See the examples from the textbook on the baseball data set.



Iterating over a Single Vector

▶ The map function will apply a known function (either a
built-in function or a user-written function) to each element of
a vector.

▶ Note map will return the result as a list.

▶ The more specific variants map dbl, map lgl, map int,
map chr return a vector of the specified type.

▶ map dfr collects the results into a data frame.

▶ See examples on the Angels baseball franchise.



Iteration over Subgroups

▶ Recall the five data wrangling verbs from Chapter 4 will
operate on a data frame and return a data frame.

▶ The group modify function in the purrr package will apply
such a verb (or any function) to subgroups of a data frame.

▶ The grouping is defined via the group by function.

▶ Like map dfr, the group modify function takes a data frame
and returns a data frame.

▶ While map dfr iterates over individual elements of a vector,
group modify iterates over groups (subsets) of the input
data frame.



Baseball Data Examples

▶ Recall the Pythagorean expected winning percentage formula:

ŴPct =
1

1 + (RA/RS)2

▶ Bill James suggested the exponent of 2, which gives a formula
that predicts actual winning percentage fairly well.

▶ Would a different exponent (call it k) give a formula that fit
the observed winning percentages better?

▶ The nls function can perform nonlinear regression and
estimate the optimal value of k for a set of data.

▶ We can define a function to estimate this k and use
group modify to apply the function to various subsets (say,
decades) of the historical baseball data.

▶ Another data example uses group modify to identify league
home run leaders over subsets of the historical data.



Example of associations with BMI

▶ Section 7.7 of the textbook has an extended example of
creating scatterplots to display the association between BMI
and numerous other variables in the NHANES data set.

▶ We write our own plotting function bmi plot and use map to
apply it to various columns.

▶ This produces a list of plot objects, but to actually see the
plots, we use the wrap plots functions in the patchwork
package.


