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Abstract

Seventy-five years ago, Yates (1934) presented an article intro-

ducing his continuity correction to the χ
2 test for independence in

contingency tables. The paper also was one of the first introductions

to Fisher’s exact test. We discuss the historical importance of Yates

and his 1934 paper. The development of the exact test and continuity

correction are studied in some detail. Subsequent disputes about the

exact test and continuity correction are recounted. We examine the

current relevance of these issues and the 1934 paper itself and attempt

to ascertain its place in history.
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1 Introduction

The year 2009 marks the 75th anniversary of the publication of Frank Yates’

paper (Yates 1934) discussing options for testing for association in contin-

gency tables: the Pearson χ2 test, Fisher’s exact test, and the well-known

continuity correction that bears Yates’ name. While it may not be commonly

given credit as a colossally influential article that has shaped statistical sci-

ence, this medium-length paper introduced some lasting ideas and methods

(as well as some perpetually controversial ones) to contingency table analysis.

The purpose of Yates’ paper is twofold: firstly, to introduce statisticians

to Fisher’s exact test (a very new procedure at the time), in large part to

use the exact test as a sort of gold standard against which the small-sample

performance of the (at that point in time) well-established χ2 test of Pearson

may be judged. Secondly, Yates presents his continuity correction, which

results in the χ2 test better approximating the exact test.

Yates (1934) motivates the discussion by immediately asserting, “The χ2

test is admittedly approximate, for in order to establish the test it is necessary

to regard each cell value [i.e., count] as normally distributed with a variance

equal to the expected value, the whole set of values being subject to certain

restrictions.” Note that the variance equals the mean in the archetypal count

model, the Poisson, and that the normal approximates a Poisson with large

mean (Mood, Graybill, and Boes 1974, p. 120). This heuristic argument was

also used by Fisher in a revised footnote within a paper on the χ2 statistic
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(Fisher 1922).

Of course, the χ2 approximation requires a large sample size, and Yates

quotes the rule of thumb that is still most commonly used today: the χ2

test is “ sufficiently accurate if no cell has an expectancy of less than 5.” In

Section 5 we deal with Yates’ discussion of the performance of the χ2 test for

small to moderate samples.

After some brief background information about Frank Yates, we explore

in Sections 3 through 5 his 1934 paper, outlining its major statistical con-

tributions. In Section 6 we discuss controversies and criticisms of Yates’

correction that arose in later years and revisit Yates’ 1984 reply to those

critics. The final two sections detail the current relevance and historical

importance of the 1934 paper.

2 Background information about Frank Yates

There are a number of good biographical articles about Frank Yates in the

statistical literature, including those by Nelder (1997), Dyke (1995) and

Healy (1995a and 1995b). Here we briefly summarize some highlights from

his career, including those relevant to the 1934 paper on contingency tables.

Yates came to prominence as a statistician when he began working at

Rothamsted Experimental Station in 1931 as an assistant to R. A. Fisher,

who was already highly prominent at that time. When Fisher left Rotham-

sted two years later, Yates rose to head of the Statistics Department, where
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he remained for 35 years, while still continuing collaborations with Fisher

(Nelder 1997). It is natural, albeit somewhat unfortunate, that Yates’ legacy

is so closely tied to Fisher. Given all of Yates’s accomplishments, it would be

mightily unfair to view him as a sort of Watson to Fisher’s Holmes; rather,

it is better to view Yates as a Gehrig to Fisher’s Ruth. Healy (1995b), while

noting that Yates was “undoubtedly Fisher’s follower and stood in [Fisher’s]

shade,” suggested that Yates’ work was a major impetus for Fisher’s statis-

tical insights spreading through the larger scientific community. Healy rated

Yates (as a practicing statistician) at least as highly as Fisher.

The contributions of Yates to the field of experimental design (e.g., Yates

1933; Yates 1936a; Yates 1936b; Yates 1937) are well known and well re-

counted in many of the references listed above. However, Yates’ greatest

contribution to statistics is perhaps his embrace of the use of computing to

solve statistical problems. This philosophy is of course of primary importance

today, and is quite relevant to the article which we discuss here.

3 Development of Fisher’s exact test

As Yates points out in his first paragraph, the χ2 test was famously in-

troduced by Pearson (1900), with Fisher (1922) modifying the degrees of

freedom of the test statistic. The origination of the exact test is not as well

known. The first appearance of the exact test in Fisher’s book Statistical

Methods for Research Workers (SMRW), whose first edition had been pub-
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lished in 1925, was in the fifth edition, published in 1934, the same year as

Yates’ paper. (The fifth edition of SMRW also included, for the first time,

discussion of Yates’ continuity correction.) Clearly, SMRW was quite expe-

ditious in reflecting the then state-of-the-art methods in contingency table

analysis.

It is unclear, however, that Fisher was the first person to derive the exact

test. That honor may belong to Joseph Oscar Irwin (who had previously

worked with Fisher at Rothamsted Experimental Station), who in 1935 pub-

lished a paper on comparing two binomial proportions using an exact test.

In a footnote to that article, Irwin (1935) wrote, “This paper was concluded

in May 1933, but its publication has been unavoidably delayed. Meanwhile a

paper dealing with the same subject, in some respects more completely, has

been published by F. Yates.” (Place Fisher/Yates v. Irwin in the long list

of precedence controversies, along with Gauss v. Legendre, Mann/Whitney

v. Wilcoxon, and the granddaddy of them all, Leibniz v. Newton.) In fact,

Yates’ 1934 paper was “more complete” than Irwin’s only in some respects.

Irwin’s paper dealt solely with the case of 2× 2 contingency tables, whereas

Yates mentioned more general tables. Also, the introduction of the exact test

was merely a part of Yates’ paper, with the introduction of the continuity

correction occupying the major portion. On the other hand, Irwin focused

solely on the development of the exact test in his paper, and in that par-

ticular respect, provided much more description than did Yates. Armitage

(1982) and Greenberg (1983) provide information on Irwin’s career.
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Interestingly, while Yates (1934) refers in the first sentence of the paper to

“statistical tests of independence in contingency tables,” when he motivates

the exact test in the 2 × 2 case, he assumes that the data come from “two

samples of N − n and n respectively,” each from a binomial distribution.

This would actually correspond to a “test for homogeneity,” which is based

on a different sampling scheme (Bock et al. 2007): In this setting, samples

are taken from multiple populations and a single categorical variable is ob-

served, rather than, say, two categorical variables being observed on a single

sample in the test for independence. Of course, the implementations of both

the exact test and the χ2 test are identical whether we are testing for inde-

pendence or homogeneity, so we may use either setting to motivate the test

statistic calculation. Anyway, Yates makes no distinction between the two

settings in the article.

We note that in the 1934 paper Yates denotes the marginal totals by

N − n, n, N − n
′

, and n
′

, respectively. In a later paper (Yates 1984), he

adapts an arguably less confusing notation for the 2 × 2 table, shown in

Table 1.

In the 1934 paper, Yates (giving credit to a suggestion by Fisher) derives

the fact that the P-value of the exact test is a hypergeometric probability.

Yates’ explanation of the exact test is somewhat more theoretically detailed

than Fisher’s in SMRW (although Fisher illustrates the method with a nu-

merical example). While Yates states that the method is due to Fisher, Healy

(1995b) wonders if it might be more appropriately called the Fisher-Yates

6



Table 1: A cross-classification table following the notation of Yates (1984).

B1 B2 Total

A1 a b n1

A2 c d n2

Total m1 m2 N

NOTE: N observations, on which two binary variables A and B are measured,

are cross-classified.

Exact Test, given Yates’ role in disseminating the method.

In the case of a 2 × 2 table, the P-value of the exact test represents

the probability that the count in a particular cell is as or more favorable to

the alternative hypothesis (of association) than the observed count for that

cell, when the margins of the table are fixed at their observed values. Is it

reasonable to assume the “constancy of marginal totals”? This is a question

that many practitioners gloss over, but Yates devotes nearly a page and a

half to justifying this assumption. As it turns out, through the years Yates’

arguments in this regard were not universally accepted, and this led in part

to the minor furor recounted in Section 6.

Yates’ first, fairly intuitive, argument was that the conclusion of the test is

in no way affected by which variable represents the rows and which represents

the columns; therefore, since the row totals are fixed (as is the case when

taking two independent binomial samples), we can just as well view the

columns as fixed. A second argument Yates presents is that we may view
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the observations as a single random sample of size N , and then classify those

sampled observations according to the row variable (say, A). We may then

randomly select m1 of these N observations and assign them to class 1 of

the column variable (say, B), with the other m2 of the observations being

assigned to class 2 of B. While this establishes the constancy of the column

totals, it may not intuitively mirror the way data are gathered for 2 × 2

tables, in many cases. Finally, Yates mentions that “the marginal totals are

in the nature of ancillary statistics.”

Throughout the paper, Yates focuses mostly on the 2 × 2 case, although

Fisher’s exact test can be extended to general r × c tables. (In that case,

one must choose a method of ordering possible table configuations according

to how severely they depart from the null.) Having derived the exact test,

Yates concludes, “even when the marginal totals are quite small the evalu-

ation of χ2 is much more expeditious,” and he focuses on the properties of

the χ2 test. In fact, one suspects that Yates discusses the exact test here

primarily to motivate exact probability calculations with which the various

χ2 approximations may be compared.

4 Yates’ continuity correction

The part of the Yates (1934) paper that is most well-known today may be

his continuity correction recommendation, for which, according to Nelder

(1997), “Yates is probably most widely known.” The ordinary (uncorrected)
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χ2 statistic commonly given as

χ2 =
∑

i,j

(Obsij − Expij)
2

Expij

where Obsij is the observed count in cell (i, j) and Expij the estimated ex-

pected count in cell (i, j) given no association, results in a uniformly lower

P-value than that of the exact test, as Yates illustrates with a simple table.

His recommendation is to adjust the expected counts 1/2 unit closer to the

observed counts for each cell, resulting in:

χ2
′

=
∑

i,j

(|Obsij − Expij | − 0.5)2

Expij

.

Yates points out that this adjusted test statistic produces a P-value some-

times greater and sometimes less than the exact P-value, but which is typi-

cally much closer to the exact than is the P-value from the uncorrected χ2.

To illustrate this, Yates first deals with the simple case of a 1 × 2 contin-

gency table, calculating some exact binomial probabilities and comparing

these with the corresponding (one-tailed) P-values of the ordinary χ2 test

and the χ2 test with his continuity correction. For example, if the true prob-

ability of success p = 0.5, in 10 independent trials the exact probability of

4 or fewer successes is 0.3770. The P-value of the uncorrected test (with a

“less than” alternative) is 0.2635, and the P-value of the corrected test is

0.3759, far closer to the “exact” value. Yates points out that this is because

the χ2 distribution is continuous, “whereas the distribution it is endeavour-

ing to approximate is discontinuous.” With several other such examples,
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Yates provides evidence for the continuity correction’s improvement to the

approximation.

We may note that most contemporary introductory texts (e.g., Peck et

al. 2008; Sullivan 2007; Bock et al. 2007) seem to focus all attention on

the uncorrected χ2 statistic, not mentioning the continuity correction. Cer-

tainly this is a defensible choice; it seems pedagogically simpler to deal with

only the uncorrected statistic. Furthermore, for sufficiently large samples the

uncorrected statistic gives a P-value approximating the exact P-value quite

well, and for small to moderate samples, the exact test itself is computa-

tionally much more feasible than in Yates’ day. If the continuity correction

with the χ2 test is no longer needed/taught, however, we may logically ask

the question of whether it is necessary to teach the continuity correction for

the normal approximation to the binomial, which is much more commonly

done. (Perhaps since students have immediately available tables and calcu-

lators with which to compare the true binomial probability with the normal

approximation, teachers feel pressure to make this approximation as close as

possible for moderate sample sizes!)

5 Yates’ study of the small sample behavior

of the χ2 test

In the section of his paper labeled, “Discrepancies of the χ2 Test after cor-

recting for Continuity,” Yates (1934) computes discrepancies between the
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0.025 and 0.005 cutoff values of the χ2 distribution and the corresponding

values of the sampling distribution of the continuity-corrected test statistic

χ2
′

. This is by far the most technical section of the paper, and given the

style of exposition of Yates’ day (heavy on wordy explanations and light on

mathematical notation), it is probably the most difficult to follow.

Whereas in the previous section Yates compared P-values arising from the

uncorrected and corrected χ2 tests, in this section he attempts to compare

specific cutoff points for quantities having a discrete distribution. This is a bit

more awkward: Yates (1934, p. 223) notes, “There are, of course, in general

no discrepancies corresponding to the exact 2.5 per cent and 0.5 per cent

points, but it is possible to determine approximate hypothetical discrepancies

. . . by interpolation.” These interpolations give rise to some unusual-looking

plots with multiple axes that require some study to understand. Yates later

apparently regretted this focus on nominal levels in this discrete type of test,

noting that “concentration on single-tail nominal levels of 2.5 and 0.5 per

cent is a defect in my 1934 paper, which reflects the current thinking of the

time” (Yates 1984, p. 437).

Specifically, Yates orders Table 1 so that n1 > n2 and m1 > m2 (if this

is not so, one can simply switch the category labels). He then examines the

distribution of d, which in this formulation is the random value for the cell

with the smallest expected value. He notes that its value may range from 0 to

n2 (i.e., across n2 + 1 terms) and its expected value will be E(d) = n2m2/N .

If we fix E(d) and n2+1, we obtain a series of distributions for d as the overall
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total N varies. Yates calls the distribution in such a series with the smallest

possible N (for a given E(d) and n2+1) the limiting contingency distribution,

and notes than when N → ∞, the distribution approaches a binomial. By

examining the discrepancies associated with the continuity-corrected χ2 for

each of these extreme distributions, Yates could generally characterize the

discrepancies for any distribution in that series.

In terms of practically applying his findings, Yates suggests using the con-

tinuity correction whenever the smallest expected cell count is less than 500

(in other words, in any case other than when the correction has a negligible

effect). When the smallest expected cell count is less than 100, Yates sug-

gests forgoing the ordinary χ2 table when obtaining the critical value for the

test. Rather, the analyst should find an adjusted cutoff value based on the

table Yates (1934, Table III) presents. If interpolation within the levels given

in Yates’ table is not precise enough, Yates recommends that the exact test

be used. Again, these small-sample conclusions and recommendations Yates

provides are philosophically based on the exact test being a gold standard;

Yates is determining what application of a χ2-type test can best approximate

the exact-test results. As the years went by, the general trust in the exact

test fell into doubt in some statisticians’ eyes.
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6 Yates’ 1984 paper

With the increased computing power of the 1970s and 1980s, simulation-

based evaluations of classical statistical tests became feasible. In one of the

first of these, Berkson (1978) compared the sizes of the ordinary χ2 test, the

continuity-corrected test, and the exact test (examining one-tailed alterna-

tives in each case). His conclusion was that the uncorrected test maintained

the nominal level far better than the other two, which were found to be overly

conservative. Given this, Berkson noted that the “exact test” was far from

exact in this sense; he also suggested that, considering the large discrepan-

cies among the test, that the exact test and Yates’ test were not merely the

uncorrected test “with a ‘correction,’ but are actually different tests, based

on different principles.”

In a comprehensive analysis of a large class of 2× 2 tables, Haber (1980)

compared the uncorrected χ2 test and several continuity-corrected tests, in-

cluding that of Yates (1934). Haber’s results showed that in two-sided tests

with 2 × 2 tables, the uncorrected χ2 test produced P-values that were too

low, while Yates’ correction led to P-values that were too high (resulting in

a conservative test). (Yates (1984) would find fault with Haber’s method for

calculating the two-sided P-value.)

Upton (1982) produced a simulation-based comparison of a large number

of tests for association in 2× 2 tables, among which were Fisher’s exact test

and the χ2 test with Yates’ continuity correction. He found that these two
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tests performed nearly identically (which mirrors the major point of Yates’

1934 paper), but found that both tests were highly conservative, typically

failing to reach the nominal significance level. (This agreed with the con-

clusions of Garside and Mack (1976) and Berkson (1978).) Upton (1982)

recommended against these two tests when analyzing data from two inde-

pendent samples, although his recommendation would not prove permanent.

In response to these critical papers, Yates (1984) wrote a long and detailed

defense of the exact test (and, to a lesser degree, of the continuity-corrected

χ2 test). Using a large series of examples, Yates defended the exact test on

mostly philosophical grounds that highlighted his objections to the Neyman-

Pearson style of hypothesis testing. Some foundational issues intrinsic to

Yates’ arguments included: the interpretation of the significance level as the

long-run proportion of rejections when H0 is true; the role of conditioning on

the marginals when testing association in two-way tables; the use (or misuse)

of strict nominal significance levels; and the correct approach for adapting

one-sided P-values to a two-sided test and vice versa. Many of the questions,

of course, have no indisputably correct answer. However, based on Yates’

views of these issues, he presented passionate refutations of the conclusions

drawn by Berkson (1978), Haber (1980), and Upton (1982).

Later, Upton (1992) would reverse his criticism of the exact test, conclud-

ing it was unfair, when dealing with a test based on a discrete distribution,

to compare the Type I error rate with a nominal α. Upton (1992) was still

hesitant about the continuity correction, worrying about users “forgetting
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Table 2: An example 2 × 2 contingency table given in Yates (1934).

Normal Teeth Maloccusion Total

Breast-fed 4 16 20

Bottle-fed 1 21 22

Total 5 37 42

NOTE: The row variable is method of feeding for infants and the column

variable is incidence of maloccusion. The original data are from Hellman

(1914).

that [the continuity-corrected statistic] is being used to approximate a sum

of discrete probabilities.”

7 Relevance of the issues today

In some ways, the onset on fast computing has rendered some of the issues

raised by Yates (1934) irrelevant. For instance, consider an example Yates

(1934) presents using data from Hellman (1914) on maloccusion of infants’

teeth, presented here as Table 2: Yates calculates χ2 and the corrected χ2
′

for these data and compares the respective P-values to the P-value from the

exact test. To test for an association between feeding method and incidence of

maloccusion, today we can obtain the exact test P-value virtually instantly

using the fisher.test function in R, for example (R Development Core

Team 2007). Using fisher.test on the expanded 3×2 table (shown here as
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Table 3: An example 3 × 2 contingency table given in Yates (1934).

Normal Teeth Maloccusion Total

Breast-fed 4 16 20

Bottle-fed 1 21 22

Breast and Bottle-fed 3 47 50

Total 8 84 92

NOTE: The row variable is method of feeding for infants (with an additional

row category) and the column variable is incidence of maloccusion. The

original data are from Hellman (1914).

Table 3) given in Yates (1934) poses no difficulties either. When multiplying

the sample cell counts by 10 or even 100, the fisher.test function in R

2.5.1 worked immediately. Eventually the cell counts get too large for the

fisher.test function at its default settings (although this can be alleviated

by increasing the workspace argument).

This indicates that for the small-to-moderate sized problems to which

Yates (1934) refers, there is no need to use the χ2 test at all, since the exact

test is easily accessible (excluding the case of teaching introductory courses).

This depends, of course, on whether one accepts the premise of the exact test

that the marginal totals be fixed, and that one does not mind the exact test’s

conservatism in the Neyman-Pearson sense, as discussed in Section 6. When

sample sizes are large enough that the exact test is infeasible, the continuity

correction makes little difference to the result.
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8 Conclusion

The historical significance of Yates’ 1934 article is perhaps underrated. Though

merely of moderate length, it provided one of the earliest explanations in the

statistical literature of Fisher’s exact test, at around the same time that

Fisher (1934) mentioned the exact test in the fifth edition of SMRW (al-

though the idea of the exact test seems to have been known for some time

previous by those in Fisher’s inner circles). In addition, Yates (1934) for-

mally proposed the continuity correction to the χ2 test for the first time.

Finally, Yates’ numerical studies in this paper were the first in a long and

often contentious series of investigations into the best method for testing for

association in contingency tables. This controversy has carried into modern

times, without a definitive resolution, and has led to foundational questions

about the meaning of conditional tests and the appropriateness of Neyman-

Pearsonian measures of actual levels of significance.

Admittedly, most statisticians today would likely say that the continuity

correction to the χ2 test and its relationship to the exact test is a fairly minor

dispute today, as statistical controversies go. While Yates’ 1934 paper may

be more important historically than as a progenitor of current research, it is

more than a mere curio. Since the χ2 and exact tests are used in numerous

everyday applications, its influence, though indirect, is ubiquitous on statis-

tical practice. The acceptance of Yates’ continuity correction today is rather

mixed. As discussed in Section 4, many introductory statistical textbooks
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present the χ2 test without the correction. Agresti (2002), in a more ad-

vanced text, also presents the χ2 test without the correction, mentioning in

a footnote that “since software now makes Fisher’s exact test feasible even

with large samples, this correction is no longer needed” (Agresti 2002, p.

103). On the other hand, note that in the chisq.test function built into R

(R Development Core Team 2007), the default setting is for the continuity

correction to be used, so neither view on the matter is universally held. (Note

that PROC FREQ in SAS gives only the uncorrected χ2 test results, except in

the case of 2 × 2 tables, when it also gives the continuity-corrected results.)

Reading Yates’ 1934 article and its golden-anniversary counterpart (Yates

1984), one may glean some sharp insights into Frank Yates’ personality and

statistical philosophy. Yates’ deep respect for Fisher shines through, espe-

cially in the 1984 paper, in which Yates repeatedly refers to Fisher’s work

and statistical philosophy. In the examples and justifications Yates (1934)

provides, we sense his relatively early reliance on computing machines as

vital tools for statistical analysis and his belief in the primacy of applica-

tions. From the occasionally almost-scathing rejoinder (Yates 1984) to his

critics, on the other hand, we encounter another side of his personality in the

passionate, Fisherian defense of his ideas.

While the 1934 paper is neither the first word nor the last word regarding

testing for association in contingency tables, it is historically important for

several reasons. It provided a snapshot of the contemporary state of the art

at the time, it discussed (probably, for most readers, introduced) Fisher’s
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method for exact testing, and it suggested the continuity correction that

would be debated for decades to come. Yates bestowed upon statistics many

contributions during his distinguished career, and his 1934 paper is a small

gem whose brilliance can be seen three-quarters of a century later.
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