Review for Exam II Stat 205: Statistics for the Life Sciences

Note made by: Timothy Hanson Instructor: Peijie Hou

University of South Carolina

Logistics

- * Multiple choice, 28 questions.
- * You can bring one page (both sides) of formula sheet.
- * No hats, no phones.
- * Exam II covers Chapters 5, 6, 7, and 8.

Chapter 5.1, 5.2

* Sampling distribution of \overline{Y}

Theorem 5.2.1: The Sampling Distribution of \overline{Y}

1. Mean The mean of the sampling distribution of \overline{Y} is equal to the population mean. In symbols,

$$\mu_{\overline{Y}} = \mu$$

2. Standard deviation The standard deviation of the sampling distribution of \overline{Y} is equal to the population standard deviation divided by the square root of the sample size. In symbols,

$$\sigma_{\overline{Y}} = \frac{\sigma}{\sqrt{n}}$$

- 3. Shape
 - (a) If the population distribution of Y is normal, then the sampling distribution of \overline{Y} is normal, regardless of the sample size n.
 - (b) Central Limit Theorem If n is large, then the sampling distribution of \overline{Y} is approximately normal, even if the population distribution of Y is not normal.

6.3: Confidence interval for μ

- * Data are generated $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2)$.
- * Use Y_1, \ldots, Y_n to come up with plausible range for μ , called a confidence interval.
- * A 95% confidence interval for μ is given by

$$ar{y} \pm t_{0.025} S E_{ar{Y}}$$
 where $S E_{ar{Y}} = rac{s}{\sqrt{n}}$.

- * A 99% confidence interval is ___? than a 95% confidence interval.
- * True or False: a confidence interval always contains the unknown $\mu.$

6.3: Confidence interval for μ

- * t-distribution is used because we estimate σ by s in $SE_{\bar{y}}$; t has fatter tails than normal.
- * Probability of confidence interval covering μ is 95% before we conduct experiment. After experiment the interval either covers μ or not, we don't know which.
- * After we conduct experiment and compute $\bar{Y} \pm t_{0.025} SE_{\bar{y}}$, we call refer to "confidence" instead of "probability."
- * HW: 6.3.4, 6.3.5 (use R for both) .

6.7: Confidence interval for $\mu_1 - \mu_2$

* Now have two random samples from two populations:

Population 1: μ_1 and σ_1 Population 2: μ_2 and σ_2

* Have sample statistics:

Sample 1: \bar{y}_1 and s_1 and n_1

Sample 1: \bar{y}_2 and s_2 and n_2

* (p. 201) Standard error of $\bar{y}_1 - \bar{y}_2$ is

$$SE_{\bar{y}_1-\bar{y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

Confidence interval for $\mu_1 - \mu_2$

* 95% confidence interval for $\mu_1 - \mu_2$ is given by

$$\bar{y}_1 - \bar{y}_2 \pm t_{0.025} SE_{\bar{y}_1 - \bar{y}_2}.$$

* The degrees of freedom for the *t*-distribution is (p. 206)

$$df = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1 - 1) + (s_2^2/n_2)^2/(n_2 - 1)}.$$

R will do the work for us.

* HW: 6.7.11, 6.7.12, 6.7.13, 6.7.14 (use R for all of these).

$\mu_1 \& \mu_2 \text{ versus } \bar{y}_1 \& \bar{y}_2$

- * We do not know μ_1 or μ_2 . These are unknown population means.
- * We do know the sample means \bar{y}_1 and \bar{y}_2 .
- * Don't write something like $\mu_1=142$ miles per hour.
- * Write: μ_1 = population mean tennis ball serve speed using the new composite racquet, μ_2 = population mean tennis ball serve speed using the old-type racquet.

7.2: The *t*-test for $H_0: \mu_1 = \mu_2$

- * Initially consider $H_0: \mu_1 = \mu_2$ versus $H_A: \mu_1 \neq \mu_2$.
- * $t_s = \frac{\bar{y}_1 \bar{y}_2}{SE_{\bar{y}_1} \bar{y}_2}$ is the *test statistic*.
- * The *p*-value is $Pr\{|T| \ge |t_s|\}$, where T is a student t random variable with degrees of freedon df given by the Welch-Satterthwaite formula on slide 6.
- * The P-value will be computed for you. Recall that the P-value is the probability of seeing two sample means \bar{Y}_1 and \bar{Y}_2 even further apart than what we saw given that $H_0: \mu_1 = \mu_2$ is true.
- * Reject $H_0: \mu_1 = \mu_2$ in favor of $H_A: \mu_1 \neq \mu_2$ if P-value $< \alpha$ (otherwise accept H_0). α is called the *significance level* of the test, usually $\alpha = 0.05$.
- * HW: 7.2.3(a,b), 7.2.4(a,b), 7.2.9 (use R), 7.2.10 (use R), 7.2.11 (use R), 7.2.14, 7.2.17 (use R).

◆ロ → ◆団 → ◆ き → ◆ き → りへで

7.3: Confidence interval and t test

- * Pages 234–235 explains the following *important* rule:
- * Reject $H_0: \mu_1 = \mu_2$ in favor of $H_A: \mu_1 \neq \mu_2$ at the 5% level whenever a 95% confidence interval for $\mu_1 \mu_2$ does not contain zero.
- * HW: 7.3.6, 7.3.7.

7.3: Type I and Type II errors

- * Type I error is rejecting $H_0: \mu_1 = \mu_2$ when H_0 is true.
- * Type II error is accepting H_0 : $\mu_1 = \mu_2$ when H_0 is false.
- * α is the probability of making a Type I error, usually 5%. This is called the significance level of the test.
- * β is the probability of a Type II error. This number depends on the true, unknown value of $\mu_1 \mu_2$.
- * HW: 7.3.4, 7.3.5.

7.4: Association vs. causation

- * When can we ascribe causality?
- * A carefully controlled experiment creates two populations that are essentially identical except for an experimental manipulation (treatment vs. control). If we're careful, we can ascribe causality.
- * An observational study simply collects some data and looks for association. Here, lurking variables, or unmeasured *confounders* may be *may be* driving any association that we see.
- * HW: 7.4.1.

7.9: What a P-value is and isn't...

- * P-value | ? | the probability that H_0 is true.
- * P-value ? the probability of seeing a test statistic as extreme or more extreme than what we saw.
- * HW: 7.9.1.

7.5: One-sided alternatives

- * There are two one sided alternatives, use same t_s for both.
- * $H_A: \mu_1 < \mu_2$ or
- * $H_A: \mu_1 > \mu_2$.
- * Top one has p-value $Pr\{T < t_s\}$, Figure 7.5.1(a).
- * Bottom one has p-value $Pr\{T > t_s\}$, Figure 7.5.1(b).
- * One-sided tests give you more power to reject H_0 : $\mu_1 = \mu_2$.
- * HW: 7.5.6, 7.5.13.

7.7: Sample size calculation

- * Often we need to know how much data to collect to reject $H_0: \mu_1 = \mu_2$.
- * Need power, α , whether the alternative is two-sided or one-sided, and estimates of $\mu_1 \mu_2$ and $\sigma = \sigma_1 = \sigma_2$.
- * Here's some R code

```
> power.t.test(delta=2,sd=0.8,sig.level=0.05,power=0.9,type="two.sample",alternative="one.sided")
```

Two-sample t test power calculation

```
n = 3.678026
delta = 2
sd = 0.8
sig.level = 0.05
power = 0.9
alternative = one.sided
```

NOTE: n is number in *each* group

* HW: 7.7.1, 7.7.3(a).

When is t-test valid?

- * The *t* test assumes both populations are normal. Can check with normal probability plot.
- * If sample sizes are "large enough" $n_1 \ge 30$ and $n_2 \ge 30$, then normality isn't important.
- * If sample sizes are small we can instead use either a *permutation test* (Section 7.1) or the Wilcoxin-Mann-Whitney test (7.10).

7.10: Wilcoxin-Mann-Whitney test

- * The t test assumes both populations are normal. Wilcoxin-Mann-Whitney test works when they are not.
- * Called "nonparametric" because it does not assume that the population densities have a specific shape like the normal distribution.
- * Null is H_0 : population densities are the same.
- * Alternative is something like H_A : one population tends to be larger than the other, or H_A : soil respiration is tends to be greater in the growth area vs. the gap area.
- * Uses recipe on pp. 284–285; we use R to get P-value.
- * HW: 7.10.3, 7.10.4, 7.10.6(a,b,c).

8.2: Paired t-test

- * Have repeated measurements on the same subject.
- * Often "before" and "after" type experiments, e.g. heart rate measured before and after exercise.
- * Look at differences in measurement for each subject.
- * Can get confidence interval for μ_D , the mean difference among the two treatments.
- * Can also test $H_0: \mu_D$ vs. one of (a) $H_A: \mu_D \neq 0$, (b) $H_A: \mu_D < 0$, or (c) $H_A: \mu_D > 0$.
- * HW: 8.2.1(b), 8.2.4, 8.2.6.

8.4: Sign test

- * Paired t-test requires either a large sample size or normal data.
- * With small sample size and non-normal differences, can instead do the sign test.
- * (1) Take differences, (2) count how many differences are positive N_+ , (3) in R type binom.test(N_+ , n) to get P-value.
- * Tests $H_0: \eta_D$ vs. one of (a) $H_A: \eta_D \neq 0$, (b) $H_A: \eta_D < 0$, or (c) $H_A: \eta_D > 0$, where η_D is median difference across treatments.
- * HW: 8.4.5, 8.4.6(a).